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Understanding the multi-scale variabilities of global sea surface temperature

(GSST) is extremely critical for deepening the comprehension of surface climate

change. Great efforts have been made to study the multi-scale features of GSST,

however, aiming to fully reveal the local features, here we propose a combined

approach, incorporating an adaptive method named Ensemble Empirical Mode

Decomposition (EEMD), and Pairwise-Rotated EOF (REOF), to separate signals on

various frequency bands and eliminate the confounded EOF signatures. The

results show that the explained variance of high-frequency components (HFC) in

the equatorial central-eastern and south mid-latitude Pacific could reach more

than 60%. The grid points where the variance contributions of low-frequency

components (LFC) are greater than 40% are mainly concentrated in the subpolar

North Atlantic and the Southern Ocean in both Pacific and Atlantic sectors, while

that for secular trend (ST) hitting beyond 60% are displayed in the North Indian

Ocean, the Southern Ocean from the tip of southwest Africa expanded to the

southern side of Australia, Indo-western Pacific, east of the continents in both

hemispheres and tropical Atlantic. By applying the EOF/REOF analysis, the

leading modes of the HFC, LFC, and ST are then yielded. It is found that the

patterns of the HFC are associated with El Niño-South Oscillation (ENSO)

diversity, inferring the dominance and independence of the Eastern Pacific (EP)

and Central Pacific (CP) El Niño. Meanwhile, Atlantic Multidecadal Oscillation

(AMO) and Pacific Decadal Oscillation (PDO) emerge in the rotated modes of the

LFC, with the former exhibiting an Atlantic-Pacific coupling.

KEYWORDS

global sea surface temperature, multi-scale variabilities, variance contribution, climate
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1 Introduction

The long-term warming of the climate system is indisputable,

widely covering the atmosphere, ocean, and cryosphere. In the last

decade, the global-mean surface temperature (GMST) was 1.09°C

higher than that in 1850-1900, approaching the targets of the Paris

Agreement (IPCC, 2021). However, over the past century, the

observed GMST has shown a stepwise upward evolution, which

should be attributed mainly to the combined effects of the

continuously increasing concentration of human-emitted

greenhouse gases (GHGs) and the modulations of multi-scale

internal variabilities. (Kosaka and Xie, 2013; Kosaka and Xie,

2016; Yao et al., 2016a; Huang et al., 2017b; Yao et al., 2017;

Chen and Tung, 2018a).

As an essential role in the climate system, the oceans occupy

more than 70% of the Earth’s surface, highly regulating global and

regional climate by exchanging momentum, heat, and water vapor

with the atmosphere. Energy fluxes at the sea-air interface greatly

depend on the sea surface temperature (SST) and several vital

atmospheric parameters, including wind speed, air temperature,

and humidity (Deser et al., 2010), making SST well suited for

monitoring climate change and revealing critical variability

patterns. By coupling with the atmosphere, the ocean

spontaneously triggers multi-scale variabilities of the GSST

(Brown et al., 2015), such as El Niño-Southern Oscillation

(ENSO) (Bjerknes, 1972; Rasmusson and Carpenter, 1982;

Trenberth and Hoar, 1997; Rayner et al., 2003; McPhaden et al.,

2006; Sarachik and Cane, 2010), which can be further classified as

eastern Pacific (EP) and central Pacific (CP) El Niño (Trenberth

and Stepaniak, 2001; Ashok et al., 2007; Ashok and Yamagata, 2009;

Kug et al., 2009; Yeh et al., 2009; Takahashi et al., 2011; Sullivan

et al., 2016; Timmermann et al., 2018), and Indian Ocean Dipole

(IOD) (Saji et al., 1999; Webster et al., 1999) on the interannual time

scale; Pacific Decadal Oscillation (PDO) (Mantua et al., 1997;

Minobe, 1999; Newman et al., 2016) and Atlantic Multidecadal

Oscillation (AMO) (Folland et al., 1986; Schlesinger and

Ramankutty, 1994; Delworth and Mann, 2000; Schlesinger et al.,

2000; Knight et al., 2005) on the decadal to multi-decadal time

scales (Yao et al., 2016a; Chen and Tung, 2018a). These internal

variabilities at different time scales, superimposed on the long-term

trend, vividly compose the diverse climate change processes.

Great efforts have been made to reveal the multi-scale features

of GSST. There is, however, no indication that long-term trends

should be linear, despite the fact that some earlier research on GSST

trends were predominantly based on linear assumptions (Wu et al.,

2007; IPCC, 2013). And the results related to the linearity approach

are also highly dependent on the subjective decision of the time

interval (Ji et al., 2014; Xu et al., 2021; Xu et al., 2022). Likewise,

there is no prior function of any oscillatory components on the

other time scales. The period and frequency should be time-varying

with the non-stationary nature of time series (Huang et al., 1998).

Yet the studies based on the Fourier Transform or low-pass-filter

are also heavily limited by arbitrary assumptions, entirely departing

from the core principle of ‘data-driven’. Moreover, some studies

focusing on multi-scale variabilities of surface temperature are

discussed from a global or regional mean perspective (e.g., Yao
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et al., 2016a; Zhang et al., 2019; Coleman, 2022). However, analysis

based on the GMST or global-mean sea surface temperature

(GMSST) may eliminate a number of local characteristics and

then arrive at a general conclusion that the secular trend has

contributed to the majority of the deviations. At any grid points

globally, does the long-term trend predominate the variance

contribution? Although Mann and Park (1994) developed a

method named Mul t i - taper Method S ingu lar Va lue

Decomposition (MTM-SVD), which could carry out a local

frequency domain spatio-temporal decomposition of data

variance, evaluating if a particular large-scale pattern exists within

a narrow frequency band and reconstructing. They argued that

there is no consistent evidence to prove the existence of decadal or

longer internal variabilities (Mann et al., 2020), and volcanic forcing

may be a potential driver (Mann et al., 2021). However, it is hard to

fully demonstrate the local features according to the specific

frequency determined from the entire variable field, and

motivated by previous studies, we aim to uncover multi-scale

variabilities’ spatio-temporal features using observational data

instead of arguing whether they are part of the climate system or

a response to external forcings.

Additionally, analyses using the Empirical Orthogonal Function

(EOF) method are constantly plagued by “mode mixing,” which is

partly caused by the blending of the signatures of global warming

and other dynamical patterns. Alternatively, several dynamical

patterns linked to their dominant frequency bands appear in the

same spatial mode, which greatly confuses the real physical facts

(Zhang et al., 2010; Chen et al., 2017; Chen and Tung, 2018a; Feng

et al., 2020a; Feng and Tung, 2020b). Besides, though Huang et al.

(2017b) proposed the decadal modulated oscillation (DMO),

covering the ENSO, PDO, AMO, and Arctic Oscillation (AO),

they do not separate these climate variabilities well in their

Figure 7 and Table 2 from a frequency perspective. Thus, perhaps

it is more appropriate to separate the frequency bands of the GSST

series grid-by-grid before using EOF analysis. Then apply the

rotation algorithm to eliminate the confounded signatures, which

may be more consistent with the actual physical facts.

To better investigate the multi-scale variability features of the

GSST over the past century, here we take advantage of an adaptive

analysis method named Ensemble Empirical Mode Decomposition

(EEMD) (Huang et al., 1998; Huang andWu, 2008; Wu and Huang,

2009). By now, this advanced method has been widely taken

advantage of in climate and environment research, driving several

novel conclusions (e.g., Franzke, 2009; Qian et al., 2010; Wu et al.,

2011; Chen et al., 2014; Ji et al., 2014; Niu et al., 2017; Xu et al., 2021;

Wu et al., 2022; Xu et al., 2022). Benefiting from this method, the

high-frequency components (HFC), low-frequency components

(LFC), and a secular trend (ST) of the SST series can be extracted

(See Section 2 for more details), the variance contributions of which

will be further investigated. Subsequently, EOF analysis is applied to

separate the principal spatio-temporal structures in each frequency

band. Furthermore, the Pairwise-Rotated EOF (REOF) analysis

(Chen and Wallace, 2016; Chen et al., 2017; Chen and Tung,

2018a) is then employed to eliminate ‘mode mixing,’ making it

approachable to some well-known climate patterns. Overall, a

broader understanding and interpretation of these multi-scale
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variability features of the GSST could enrich and deepen our

comprehension of the global surface climate change even the

climate system.

The other sections are arranged as follows: Section 2 describes

the SST dataset and research methodologies. Section 3 discusses the

main features of the GMSST. Section 4 displays the local variance

contributions of the multi-scale variabilities. Section 5 demonstrates

the main space-time modes of the GSST tied to different frequency

bands. Finally, Section 6 summarizes and discusses this paper.
2 Data and methods

2.1 Data

2.1.1 Observation data
Research on the GSST variabilities always faces a dilemma in

both the accuracy and length of the observational data. On the one

hand, despite the availability of satellite data with a high spatial

resolution in recent decades, the observation period of it is so short

that a longer time scale analysis, including multi-decadal or

centennial, cannot be met. While on the other hand, some ship-

based archives in the early twentieth century are coarse and sparse,

distorting the SST obtained by statistical methods.

The Extended Reconstructed Sea Surface Temperature (ERSST)

dataset Version 5 (newest version until now, Huang et al., 2017a),

which is derived from the International Comprehensive Ocean-

Atmosphere Dataset (ICOADS) Release 3 (Freeman et al., 2017),

provides monthly SST data from January 1854 to the present (1900-

2020 is used in this study), with a spatial resolution of 2° × 2°. By

taking Argo floats and the Hadley Centre Ice-SST version 2

(HadISST2) ice concentration into account, ERSST v5 improves

upon the previous version ERSST v4 (Huang et al., 2014; Liu et al.,

2015; Huang et al., 2016), making the spatial variabilities of the SST

anomaly (SSTA) more realistic in both tropical and midlatitude

oceans (Huang et al., 2018).

2.1.2 Climate indices
In addition, to further investigate the relationship between the

internal oscillations of the climate system and multi-scale

variabilities of the GSST, several climate indices, including the

Eastern Pacific (EP) El Niño index, the Central Pacific (CP) El

Niño index (Sullivan et al., 2016), the PDO index (Mantua et al.,

1997; Zhang et al., 1997), and the AMO index (Enfield et al., 2001;

Trenberth and Shea, 2006) are also discussed here. All these indices

mentioned above are available through publicly available websites.
2.2 Methods

2.2.1 Divisions of the main ocean basins
It was previously assumed that the Pacific, Atlantic, and Indian

Oceans extend south of Antarctica. However, as the only part that

completely surrounds the Earth without being separated by the

continents, the Southern Ocean has gradually been evidenced to
Frontiers in Marine Science 03
play an essential role in the climate system. Therefore, in this study,

the global ocean basin is divided into four main basins, including

the Pacific Ocean (64°N-10°N, 112°E-180°-100°W; 8°N-28°S, 112°

E-180°-80°W), the Atlantic Ocean (64°N-10°N, 100°W-0°-10°E; 8°

N-28°S, 80°W-0°-10°E), the Indian Ocean (20°N-28°S, 20°E-110°E),

and the Southern Ocean (30°S-88°S, 0°-358°E).
2.2.2 Ensemble empirical mode decomposition
To discuss the multi-scale variability features of GSST, here, the

Ensemble Empirical Mode Decomposition (EEMD) method is

applied to extract various frequency components. The so-called

EEMD is achieved by adding white noise to the original series, then

taking the ensemble mean (Huang et al., 1998; Huang and Wu,

2008; Wu and Huang, 2009). In our study, the SST series was

decomposed grid-by-grid individually, the processing flow of which

is also called the Multi-dimensional Ensemble Empirical Mode

Decomposition (MEEMD) method (Wu et al., 2009), which has

spatial and temporal locality properties.

With EEMD decomposition, a nonlinear and non-stationary

time series x(t) (e.g., SST) can be decomposed into several Intrinsic

Mode Functions (IMFs, hereafter cj(t) (j = 1,2,3…,m), strictly) and a

secular trend (r(t)), a curve either monotonic or containing only

one extremum:

x(t) =om
j=1cj(t) + r(t) (1)

Following Wu and Huang (2009) and Xu et al. (2021), the

amplitude of white noise is 0.2 times relative to the variance of the

raw data, and N = 400 ensemble members is applied. In addition,

the number of cj(t), marked as m, is determined as follows:

m ¼ ⌊ log2 M − 1 ⌋ (2)

Where M is the data length, referring to 121 for the annual-

mean data and 121 × 12 for the monthly data.

The EEMD algorithm is also considered as a binary filter.

Empirically, the approximate period of cj(t) is around three times

longer than the sampling interval, while the remaining components

cj(t) (j = 1,2,3…,m) all have twice the period of the predecessor

(Flandrin and Goncalves, 2004; Wu and Huang, 2004; Wu and

Huang, 2010). For exploring the variability characteristics of GSST

over multi- scales, an additional overlay of the components derived

by EEMD is further applied. Therefore, we regard the cj(t) below 10

years as the interannual variabilities (i.e., high-frequency

component, HFC), while the sum of the remaining cj(t) indicates

the decadal to multi-decadal variabilities (i.e., low-frequency

component, LFC). And in turn, the residual term shows the

secular trend (Chen and Tung, 2018a). Besides, Wu et al. (2011)

proposed a down-sampling method to estimate the uncertainty of

each component extracted by the EEMD method (see more details

in references). Although previous applications of the EEMD

method have primarily focused on some specific components

(e.g., Chen et al., 2013; Ji et al., 2014; Wei et al., 2019; Xu et al.,

2021; Wu et al., 2022; Xu et al., 2022), a comprehensive discussion

of the characteristics of all components will be conducted in

this study.
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2.2.3 Pairwise-rotated empirical
orthogonal function

The GSST series are high-dimensional and contain extremely

complex information. The SST series of any grid point cannot be

simply expressed as a linear combination of the existing SST series

in some specific grid points. Therefore, how to compress the

complicated SST variability information to an exceedingly limited

number of variables is a critical task. Currently, many studies (e.g.,

North et al., 1982; Quadrelli et al., 2005; Dommenget and Latif,

2008; Zhang et al., 2010; Chen and Wallace, 2015) use the

conventional (i.e., unrotated) EOF to separate the spatio-temporal

structure of the data:

SST(x, t)  =  o
K

i−1
EOFi(x)  · PCi(t)  +  ϵðx, tÞ (3)

where PCi refers to the ith principal component (axis), while EOFi
represents the ith spatial pattern (eigenvector). Yet the results are often

suffering from “mode mixing”, which affects the comprehension of the

real physical facts due to the mathematically enforced orthogonality

caused by EOF analysis. But there is no evidence indicating that the

spatial patterns of dynamical modes or global change signals are also

orthogonal (Chen and Wallace, 2016; Chen et al., 2017).

Fortunately, a rotation algorithm is proposed to eliminate the

distortion of physical facts by mode mixing. The Rotated EOF

analysis comprises two categories, strictly. One uses the varimax

rotation of a subset of the EOF modes to avoid the blending of the

signatures (Kaiser, 1958; Richman, 1986; Wilks, 2011) and the other

is pairwise rotation (Takahashi et al., 2011; Chen et al., 2017). The

Pairwise-Rotated EOF, also known as the REOF, is more precisely

targeted for particular dynamical modes via an orthogonal rotation

matrix as opposed to the former (Takahashi et al., 2011;

Dommenget et al., 2013; Chen and Wallace, 2016; Chen and

Tung, 2018a; Li et al., 2021), which requires the subjective

selection of the leading EOFs to engage in rotations arbitrarily:

(RPCi
RPCj

)  =  (cos qsin q   
− sin q
cos q )(PCi

PCj
) (4)

Note that all PCs are standardized. By pair-rotation of the PCs

as in Equation (4), the independence of the PCs is still maintained,

but the related spatial pattern is not irrationally constrained by

orthogonality. To determine the angle of rotation, Chen et al. (2017)

provided three criteria or algorithm, including the spatially

averaged squared covariance (SASC), the frequency-averaged

squared covariance (FASC), and the trend transfer, but only

SASC are suitable here for this study with its formula:

SASC  =  ½(EOFi · EOFj)2� → min (5)

where [] means a weighted average for a specific region, where

the mode mixing pattern emerges. The reason why the FASC and

‘trend transfer’ is not applicable is that the oscillations in different

frequency bands have already been isolated by EEMD

decomposition. We declare that the results should be insensitive

to the choice of region boundary, as long as they are not too

far apart.
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3 Main features of global-mean sea
surface temperature

Since the industrial revolution, a large amount of carbon dioxide

emitted by human activities has been driving up the Earth’s surface

temperature due to its greenhouse effect. As a key indicator for

monitoring climate change, the GMSST shows a long-term warming

trend over the past century, while overlays several oscillations on

relatively higher frequency bands. Although GMSST is of smaller

amplitude than GMST owing to the smaller heap capacity of the

land, both of them have similar characteristics. As presented in

Figure 1A, the evolution of GMSST resembles a rising staircase

(Kosaka and Xie, 2013; Kosaka and Xie, 2016; Yao et al., 2017; Chen

and Tung, 2018b; Huang et al., 2022): the secular upward trend was

interrupted occasionally by several hiatus periods (the blue shading),

defined by where the instantaneous warming rate of multi-decadal

variabilities (MDV) is zero, occurring in the early twentieth century

(1900-1908), the mid-twentieth-century (1942-1974), and the junction

of the twentieth and twenty-first centuries (2003-2010), respectively.

Overall, the global warming slowdown period we obtain highly

matches the previous studies (e.g. Kosaka and Xie, 2016; Yao et al.,

2016a; Yao et al., 2017). A common feature is that global warming

hiatus stages are often accompanied by the opposite orientations

between LFC and ST, partially canceling each other out. While

during rapid warming, LFC remains relatively stable or slightly

increases, thus highlighting the upward trend of the ST. Figure 2A

shows the evolution of the multi-scale variabilities of mean SST for

several ocean basins, with their correlation coefficients (Figures 2B–D).

Their long-term trends exhibit extremely similar consistency (see

Figure 2D). Moreover, it can be observed that global warming hiatus

tends to correspond with declining stages of LFC in the major four

oceans. However, no similar features are present during rapid warming.

Our conclusion does not contradict the results of Yao et al. (2017),

because the long-term trend is not separated in their work. The spatial

patterns obtained by regressing the GSST onto the HFC, LFC, and ST

are shown in Figures 1B–D, respectively. Regarding the HFC

(Figure 1B), the northern tropical Atlantic mode (NTAM) and the

southern subtropical Atlantic mode (SSAM) in the Atlantic, as well as

the Indian Ocean Basin Mode (IOBM) of the Indian Ocean basin, are

all mentioned as being associated with ENSO variability at low latitudes

(Rasmusson and Carpenter, 1982; Lau et al., 1997; Xie and Carton,

2004; Huang and Shukla, 2005). At mid-latitudes, the PDO-like and

Southern Hemisphere PDO (SPDO)-like patterns are also linked to the

tropical ENSO variability through the atmospheric bridge. While for

the LFC (Figure 1C), two dominant spatial patterns emerge,

characterized by the horseshoe-shaped pattern in North Pacific and

an interhemispheric dipole in the Atlantic, that is, uniform warming in

the North Hemisphere while cooling in the South Hemisphere, and

vice versa, which bear resemblance to the PDO and AMO, respectively.

The results shown above are roughly similar to Wu et al. (2011) and

Chen et al. (2017).Moreover, since we extend the frequency range from

interdecadal to multi-decadal, the oscillations longer than 10 years in

the South Pacific and southwest Indian Ocean are also captured

(Mantua et al., 1997; Yao et al., 2016b). When turning to the ST
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(Figure 1D), the spatial pattern is almost universally positive, except for

the subpolar North Atlantic, which is associated with the so-called

“warm hole” (Drijfhout et al., 2012; Woollings et al., 2012; Marshall

et al., 2015; Xu et al., 2021; Xu et al., 2022). Meanwhile, the larger values

are mainly distributed across the tropical Indian Ocean in the northern

hemisphere, the Southern Ocean around the southern side of Africa,

the southeastern side of Australia, east of the continents in both

hemispheres linked to the western boundary currents with their mid-

latitude extensions, and the eastern tropical Atlantic.
4 Variance contribution of multi-
scale variabilities

Previous studies show that the evolution of the GMSST is

typically dominated by the ST (e.g., Chen et al., 2017; Zhang

et al., 2019; Xu et al., 2022). However, no more attention was

paid to the local features. Here, benefiting from the spatial locality of

the MEEMDmethod (Wu et al., 2009; Ji et al., 2014; Xu et al., 2021),

the explained variance of the HFC, LFC, and ST will be analyzed

grid-by-grid, respectively, based on the annual-mean SST data. The

annual-mean data were used for the EEMD decomposition rather

than monthly data since the explained variance of the extratropical
Frontiers in Marine Science 05
regions’ annual cycle component might reach more than 90%

(Stine, 2010; Vecchio et al., 2010), which would make it difficult

to comprehend the other components.

Figure 3 exhibits the variance contributions (or explained

variance) of these three components mentioned above at each

grid point. The explained variance of the HFC in the equatorial

central-east and south mid-latitude Pacific could reach more than

60%, and that in regions such as the North Pacific, the northern

tropical Atlantic, the mid-latitude Atlantic in both hemispheres,

and the Indo-western Pacific also exceed 40%. These grid points,

which are primarily located in the subpolar North Atlantic and

Southern Ocean in both the Pacific and Atlantic sectors, are those

where the LFC variance contribution is greater than 40%.

Meanwhile, the variance contribution of those grid points over

the North Pacific and South Indian Ocean are also around 20-40%.

The most significant discrepancies between the HFC and LFC

patterns are centralized in the Pacific, with slight deviations in the

tropical and subtropical Atlantic (see Figure S1). Turning to the ST,

it is noted that the key characteristics are somewhat similar to those

in Figure 1D, showing that the values greater than 60% are

displayed in the tropical Indian Ocean in the northern

hemisphere, the Southern Ocean, which extends from the tip of

southwest Africa to the southern side of Australia, the Indo-western
FIGURE 1

Multi-scale variability features of sea surface temperature. (A) EEMD decomposition of the GMSST (black solid line) based on annual-mean data. The
high-frequency components (HFC, shorter than decadal), low-frequency components (LFC, longer than decadal), and secular trend (ST) are
indicated with green, red, and brown solid lines, respectively. The dashed lines denote the ensemble mean of the light color lines. The blue lines,
which are referred to as the multi-decadal variabilities (MDV), are the sum of the red and brown lines, regarded as a well-smoothed version of the
original series. The uncertainty of the raw data, HFC, LFC, and MDV are estimated by the down-sampling method, shown in the light solid grey,
green, red, and blue lines, respectively. The blue shading represents the periods of global warming slowdown. The climatology is based on the
1900-2020 mean. (B–D) Regression patterns of the GSST upon the HFC, LFC, and ST, respectively (Unit: °C). Note that these three components
above are normalized firstly to unit standard deviation, and those grid points covered by ice during at least one-third of the period of 1900-2020 are
filled with grey.
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Pacific, east of the continents in both hemispheres, and the tropical

Atlantic, whose areas are also the most noticeable regions where the

ST differs markedly from the other two components (shown in

Figure S1).

The explained variances tied to different frequency bands

among different ocean basins have remarkable discrepancies, so

here we further investigate the multi-scale variability features of the

mean SST in several regions, which is shown in Figures 4, 5. From a

regional perspective, the secular trends of SST contribute to the

largest part of the variance, suggesting that global warming still

remains the most conspicuous feature (Figure 4A). It is also notable

that the variance contributions of the HFC in the Pacific and the

Indian Ocean are as many as two and three times higher than the

GMSST, respectively (Figures 4A, B), which may be related to the

interannual variabilities such as the ENSO and IOD. What’s more,

it seems that the amplitude of the HFC in the Southern Ocean is

smaller than that in the remaining three ocean basins, according to

Figure 2A. Another feature is that the HFC of the Southern Ocean

has little correlation with other regions (see Figure 2B), possibly as a

result of its isolation, whereas the HFC of the Pacific, Atlantic, and

Indian Oceans can interact or connect via some tropical physical

processes (Li et al., 2016; Cai et al., 2019). In addition, the explained
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variances of the LFC in four basins are all approximately two times

higher than that of the GMSST, with the largest one in the Atlantic

(Figure 4A). The reason why the LFC of the GMSST has a smaller

explained variance (Figure 4B) may be attributed to the

superposition of positive and negative phases of the decadal to

multi-decadal signals among different ocean basins.

More specifically, Figure 5A presents the variance contribution

of all the IMFs. Since the secular trend accounts for most of the

explained variance for region-averaged SST, it is not involved in the

discussion again here. As mentioned in the methods section, HFC is

composed of IMF1 and IMF2. It shows that the HFC variance

contribution in the Pacific and Indian Ocean, which are greater

than GMSST, could be primarily traced back to the IMF1, with an

estimated period of about 3-4 years (see Figure 5B and Table S1),

roughly three times longer than the sampling frequency of the raw

data. There is a well-recognized decadal oscillation signal, PDO, but

the explained variances of IMF3 and IMF4 in the Pacific basin are

not dramatically greater than the others (see Figure 5A). The reason

may be that the explained variance of the LFC in the Pacific basin is

highly diminished due to the offset of compensating patterns of

PDO in the northwest and northeast Pacific (Chen and Tung,

2018a). However, the variance contribution of IMF5 is notably
FIGURE 2

Multi-scale evolution features of the GMSST or regional-mean SST. (A) Evolution of the high-frequency components (dash-dotted lines), low-
frequency components (solid lines), and secular trends (dashed lines) of the GMSST, the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, and
the Southern Ocean, respectively (unit: °C). Note that the values of secular trends should be referenced to the right axis. The blue shading
represents global warming hiatus, same as Figure 1A. (B–D) The correlation coefficients of the high-frequency components, low-frequency
components, and secular trends, among the GMSST, the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, and the Southern Ocean, respectively.
Note that the grids which do not pass the significance test (around 95% confidence level) have been colored white.
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higher than the GMSST as well as the other ocean basins, which

could be related to the AMO.
5 EOF analysis of the multi-
scale variabilities

In this section, EOF analysis will be used to reveal the main

spatio-temporal characteristics of monthly GSST in different

frequency bands. Regarding monthly SST series, nine IMFs and a

long-term trend can be obtained by the EEMD decomposition,
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according to Eq. (2). Based on the binary filter property of the

EEMD method, the periods of IMF1 are approximately 3 months

and IMF2 to IMF9 are twice as long as the former, respectively. In

general, IMF1 represents the ultra-high frequency information of

the intra-annual scale, while IMF2 and IMF3 contain annual cycle

components, all of which are not involved in EOF analysis.

Therefore, IMF3 to IMF6 are summed as the HFC, while IMF7 to

IMF9 are summed as the LFC.

The three leading EOFs and PCs of the HFC of the monthly GSST

are presented in Figure 6. The explained variance of the first mode

(29.4%) is larger than the others. However, due to the orthogonality of
B

C

A

FIGURE 3

Variance contributions of (A) High-frequency component (HFC), (B) Low-frequency components, and (C), Secular trend at each grid (unit: %). Those
grid points covered by ice during at least one-third of the period of 1900-2020 are all filled with grey. Note that for any specific grid point, the total
variance contribution of these three parts above should be 100%.
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the EOF approach, these spatial patterns have overlapping centers of

action and perturbation polarities juxtaposed from visual observation,

making it difficult to distinguish the signals at tropical and extratropical

Pacific. To estimate the optimal angle for rotating EOF1-EOF3

patterns, an evaluation of the SASC metric proposed by Chen et al.

(2017) is regarded as a critical reference. As mentioned in Section 2, the

other two metrics named FASC and ‘trend transfer’ do not properly
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suit the discussion here, as the MEEMD decomposition has already

separated the components of the GSST series at different time scales for

each grid point. The rotation of the EOFs and PCs was performed in

two steps. It is clarified that after each rotation step, the (R)EOFs and

(R)PCs will be reordered according to the newest explained variance.

Figures 7A, B) exhibit the values of the SASC as a function of the

rotation angle, which are associated with the rotation between PC1 and
B

A

FIGURE 5

Variance contributions of the Intrinsic Mode Functions (IMFs) of the GMSST or regional averaged SST (unit: %). (A) Variance contributions and
uncertainty interval (around 95% confidence level) of IMFs for the GMSST, the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, and the Southern
Ocean, respectively. (B) Variance contributions anomaly of the four main basins above relative to the GMSST. Note that the secular trends or
residuals are not included here.
B

A

FIGURE 4

Variance contributions of multi-scale variabilities of the GMSST or regional averaged SST (unit: %). (A) Variance contributions and uncertainty interval
(around 95% confidence level) of the high-frequency components, low-frequency components, and secular trends, for the GMSST, the Pacific
Ocean, the Atlantic Ocean, the Indian Ocean, and the Southern Ocean, respectively. (B) Variance contribution anomaly of the four main ocean
basins mentioned above relative to the GMSST. Note that all the error bars should be referenced to the left axis.
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PC3 (step (i)) as well as RPC2 and PC3 (step (ii)), respectively. All the

curves in Figure 7 act as sinusoidal-like functions, but at different phase.

The minimum evaluated values corresponding to step (i) and (ii) are at

about 43° and 78°, with selected regions in (18°N-28°N, 172°W-152°

W) and (10°S-10°N, 138°E-178°E), respectively. The modes after

rotation are shown in Figure S2 (after the first step) and Figure 8.

After pairwise rotation, it is found that the spatial patterns of REOF1

and REOF2 are predominantly concentrated in the central-eastern and

central Pacific along the equator, respectively, representing ENSO

diversity, i.e., EP and CP El Niño. The explained variances of these

two rotated modes are very close (18.4% and 16.3%) and maintain

orthogonality, indicating that besides being the dominant modes at

interannual timescale, EP and CP El Niño also exhibit independent

properties of each other, which aligns with the previous studies (e.g.,

Ashok et al., 2007; Ren and Jin, 2011; Timmermann et al., 2018).

Parallelly, Figure 9 exhibits the two leading EOFs and PCs of the

LFC, which explaines around 66% variance in total. It is reported

that due to the orthogonality constraint of spatial modes, although

EOF1 pattern has some AMO features, the signals in Pacific basin

are also irrationally assigned, resulting in the mode mixing of the

Atlantic and Pacific. Similarly, the SASC criterion is adopted to

determine the optimal rotation angle under the target region (0°-66°

N, 32°W-2°W), which is plotted in Figure 7C, for detaching the

PDO and AMO. It is shown that the optimal rotation angle is 56°.

The REOFs shown in Figure 10 are associated with the AMO-like

and PDO-like patterns. However, as presented in REOF1, the

positive AMO mode is accompanied by a cooling pattern of the

equatorial Pacific, and vice versa. By analyzing the low-pass-filtered

GSST data, Chen et al. (2017) argued that there exists an Atlantic-

Pacific coupling, not an illusion caused by mode mixing, so that
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REOF cannot eliminate it through any angle in the two-dimensional

phase space, but conversely, the PDO-like mode does not

demonstrate an AMO-like pattern.

Finally, the main features of the secular trend are displayed in

Figure 11, which substantially matches the findings revealed by Xu

et al. (2021, 2022) by portraying the EEMD trends. The two leading

EOFs have explained almost all of the variance here, especially the

EOF1 even reaching more than 95%. We argue that the EOF1

pattern, as well as the PC1, are mainly related to global warming,

with almost everywhere showing the warming trend, except for the

subpolar North Atlantic (cooling pattern), the tropical central

Pacific, and the Southern Ocean in the Pacific sector (close to

zero, implying no signal, according to Equation (3)). Unlike the

monotonic increase of PC1, PC2 resembles a parabola with an

upward opening. By combining the EOF2, the second mode depicts

a secular trend of decrease followed by increasing in the equatorial

central Pacific and the Southern Ocean in the Pacific sector (even

very slightly), with the turning point around the middle of the last

century. Just the opposite, several regions such as the North Pacific

show a first upward followed by a downward trend. Although this

feature is also represented in Figure 2 given by Xu et al. (2021), the

discrepancies still exist and probably can be attributed to the fact

that the secular trends are analyzed directly here, whereas they

defined the EEMD trend first.
6 Conclusions and discussions

In this study, the EEMD method is applied grid-by-grid to

extract the multi-scale variabilities of the GSST. By superimposing
FIGURE 6

Conventional (i.e., unrotated) EOFs (left panel) and PCs (right panel) of the high-frequency components of monthly GSST extracted by the EEMD
method for the period of record 1900-2020. Percentages of explained variance are printed at the bottom left on the EOF maps.
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the IMFs in nearly frequency bands, the HFC, LFC, and ST at each

grid point are obtained, respectively. It is found that the global

warming slowdown is highly modulated by the LFC signals stuck in

a downward stage, as the decadal to multi-decadal oscillations in the

four main ocean basins are mostly in the downward or negative

phases. By regressing the GSST onto the HFC, LFC, and ST, we also

found that the pattern of the HFC is associated with the ENSO,

NTAM, SSAM, and IOBM at low latitudes, as well as the PDO-like

and SPDO-like patterns at mid-latitudes, which are induced by

tropical Pacific variabilities through the atmospheric bridge. The

LFC shows a horseshoe-shaped pattern in North Pacific and an

interhemispheric dipole in the Atlantic, related to the PDO and

AMO, respectively. With the exception of the subpolar North

Atlantic, the ST’s regressing pattern is almost always positive.

Larger values are primarily found in the tropical Indian Ocean in

the northern hemisphere, the Southern Ocean surrounding

southern Africa, the southeast coast of Australia, east of the

continents in both hemispheres connected to the western

boundary currents with their mid-latitude extensions, and the

eastern tropical Atlantic.

By taking advantage of the spatial locality of the MEEMD

method, the variance contributions of multi-scale variabilities for

each grid point are explored. It has been also revealed that the
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explained variance of the HFC in the equatorial central-eastern

Pacific, and the mid-latitude Pacific in the southern hemisphere

could reach more than 60%, whereas the pattern of the LFC is

mainly concentrated in subpolar North Atlantic and the Southern

Ocean in both Pacific and Atlantic sectors, larger than 40%. The

explained variance of the ST hitting beyond 60% is widely

throughout the Indian Ocean in the northern hemisphere, the

Southern Ocean from the tip of southwest Africa expanded to the

southern side of Australia, the Indo-western Pacific, east

of the continents in both hemispheres, and the tropical

Atlantic. Moreover, the relative variance contributions of the

multi-scale variabilities of specific IMFs are further analyzed in

several ocean basins, exhibiting characteristics from a regional

mean perspective.

The main space-time modes of the variabilities in different

frequency bands obtained by EOF analysis show unjustified mixing.

Therefore, pairwise rotation is then applied for eliminating the

overlapping centers with opposite polarities, which is regarded as a

compensator for the regions with the same polarity, enabling the

orthogonality of the spatial modes. It is identified that on the high

frequency band, ENSO diversity is the dominant, characterized by

the presence of CP and EP El Niño in the first two REOF modes,

while regarding the low frequency band, the AMO and PDO
B

C

A

FIGURE 7

The spatially averaged squared covariance (SASC) metric is plotted as a function of the rotation angle. (A) pairwise rotation between PC1 and PC3 in
Figure 6 (step i, EOFs and PCs are then re-ranked according to explained variance). (B) pairwise rotation between RPC2 and PC3 in Figure S1 (step ii).
(C) pairwise rotation between PC1 and PC2 in Figure 9.
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emerge. It can thus be concluded that the diversity of ENSO,

manifesting as EP and CP El Niño, constitutes two primary

orthogonal axes on the interannual scale. Meanwhile, when

considering the decadal to multi-decadal scales, the AMO and

PDO stand out as the key axes, which could be viewed as an

extension to the findings of Chen et al. (2017).

There are still some shortages that need to discuss. On the one

hand, it has to be admitted that in the early record period as well as

during World War II, the scarcity of raw data and the backwardness
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of observation tools resulted in the poor quality of reconstructed

SST data jointly, which perhaps caused a large uncertainty. On the

other hand, for those signals with periods longer than decadal, it is

so hard to meet statistically significant when we calculate their

correlation coefficients with the RPCs due to an extremely few

statistical degrees of freedom caused by limited historical record

length. Despite these, we still insist that the results gained from the

pairwise rotated EOF analysis are enlightening. Besides, deeper

mechanisms of these features still need to be further explored, and
FIGURE 8

Pairwise-rotated EOFs (left panel) and PCs (right panel) of the high-frequency components of monthly GSST extracted by the EEMD method for the
period of record 1900-2020 after both steps (i) and (ii). Percentages of explained variance are printed at the bottom left on the EOF maps. In the
right panel, the high-frequency components of the EP El Niño and CP El Niño indices (sum of the IMFs 4-6) are shown by the red lines, while the
blue values indicate their correlation coefficients with RPC1 and RPC2, respectively.
FIGURE 9

Conventional (i.e., unrotated) EOFs (left panel) and PCs (right panel) of the low-frequency components of monthly GSST extracted by the EEMD
method for the period of record 1900-2020. Percentages of explained variance are printed at the bottom left on the EOF maps.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1238320
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1238320
we also face more blank about how these nonlinear modulated

among these ocean basins.

All in all, the purpose of this work is trying to find a novel

solution or perspective for the analysis of the multi-scale

variabilities, which we are strongly convinced is beneficial to have

a better comprehension of the global climate change for both the

past and future, even in the slightest hint. It is also worth noting that

the multi-scale variability of GSST holds significant implications for

atmospheric variables. For instance, overall, under global warming,

the long-term increasing trend of the SST may contribute to the

intensification of tropical cyclones (TCs), which has been

substantiated through observations (e.g., Sobel et al., 2016; Wang

et al., 2022), theoretical analyses (Emanuel, 1987), and numerical

experiments (Knutson and Tuleya, 2004; Knutson et al., 2020;
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Emanuel, 2021). However, on a regional scale, internal variability,

such as the Interdecadal Pacific Oscillation (IPO), can also exert a

significant regulatory impact on TCs’ activity (Zhao et al., 2020).

Consequently, how the multi-scale variabilities of GSST influence

atmospheric variables and its future evolution, still deserves

further research.
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FIGURE 11

Conventional (i.e., unrotated) EOFs (left panel) and PCs (right panel) of the secular trends of monthly GSST extracted by the EEMD method for the
period of record 1900-2020. Percentages of explained variance are printed at the bottom left on the EOF maps.
FIGURE 10
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frequency components of the AMO (total of IMFs 8-9) and PDO indices (total of IMFs 7-9) are shown by the red line, while the blue values indicate
their correlation coefficients with RPC1 and RPC2, respectively.
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