Observed impacts of the North Pacific Victoria Mode on Indian summer monsoon onset

Suqin Zhang, Peng Hu, Gang Huang, Qu Xia

PII: S0169-8095(23)00523-9
DOI: https://doi.org/10.1016/j.atmosres.2023.107126
Reference: ATMOS 107126

To appear in: Atmospheric Research

Received date: 15 August 2023
Revised date: 21 October 2023
Accepted date: 20 November 2023

Please cite this article as: S. Zhang, P. Hu, G. Huang, et al., Observed impacts of the North Pacific Victoria Mode on Indian summer monsoon onset, Atmospheric Research (2023), https://doi.org/10.1016/j.atmosres.2023.107126

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.
Observed impacts of the North Pacific Victoria Mode on Indian summer monsoon onset

Suqin Zhang1, 2, 6, Peng Hu3, 4, *, Gang Huang1, 2, 6, *, and Qu Xia1, 5

1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

3 Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming 650091, China

4 Department of Atmospheric Sciences, Yunnan University, Kunming 650500, China

5 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

6 University of Chinese Academy of Sciences, Beijing 100049, China

Submitted to \textit{Atmospheric Research}

Submitted on August 15, 2023

Revision\#1 on October 21, 2023

*Corresponding authors:

Peng Hu (hupeng@mail.iap.ac.cn) and Gang Huang (hg@mail.iap.ac.cn)
Abstract

The onset of the Indian summer monsoon (ISM) marks the arrival of the rainy season and affects billions of people. Therefore, exploring the factors influencing ISM onset is essential, especially sea surface temperature (SST) anomalies. In addition to the well-known El Niño-Southern Oscillation in the tropical Pacific, in this study, we find that the SST anomalies in the extratropical Pacific (Victoria mode, VM) can significantly impact ISM onset. The positive phase of the May VM causes monsoon onset delay, and two distinct mechanisms linking these phenomena are identified. The tropical pathway involves divergent circulation and equatorial Rossby waves. The VM-associated SST gradient causes low-level divergence and suppressed rainfall around the Indo-China Peninsula. Such suppressed rainfall induces anomalous anticyclone circulation by exciting the equatorial Rossby wave response, which prevents the establishment of monsoonal southwesterly winds and moisture transport, therefore delaying ISM onset. The extratropical pathway involves the Rossby wave train and land–sea thermal contrast. The VM triggers an eastward Rossby wave train via upper-level divergence around the Gulf of Alaska. This wave train propagates downstream and generates anomalous negative geopotential heights and low air temperatures to the northwest of India, which reduces the land–sea thermal contrast and delays ISM onset. Our result suggest that the ISM onset predictions should consider the role of May VM.

Keywords: India summer monsoon; Monsoon onset; Victoria Mode; Rossby wave train; El Niño-Southern Oscillation
1. Introduction

The onset of the Indian summer monsoon (ISM) marks the end of the hot season and the beginning of the rainy season, which is critical to the lives of billions of people (Joseph et al. 2006; Pai and Rajeevan 2009; Wang et al. 2009; Bombardi et al. 2020; Hu et al. 2022a). Advanced or delayed ISM onset could lead to drastic floods or droughts, respectively, thus affecting water management, energy generation, agricultural production, and human health (Noska and Misra 2016; Bombardi et al. 2019; Bombardi et al. 2020). Over the past eighty years, numerous studies have been devoted to investigating the multi-timescale factors that influence ISM onset (Wang et al. 2009; Bombardi et al. 2020; Hu et al. 2022a; and references therein). For example, synoptic-scale disturbances such as monsoon onset vortices and Arabian Sea cyclones are direct triggers of ISM onset (Krishnamurti et al. 1981; Deepa and Oh 2014; Baburaj et al. 2022b; Sasanka et al. 2023). At the intraseasonal timescale, ISM onset tends to occur during the wet phase of the quasi-biweekly oscillation (Wang et al. 2009; Lee et al. 2017; Ohan et al. 2019) and the 30–60-day oscillation (Wheeler and Hendon 2004; Wang et al. 2009; Kikuchi 2021; Baburaj et al., 2022a; Lenka et al., 2023ab). On interannual-to-interdecadal timescales, ISM onset is modulated by sea surface temperature (SST) anomalies over the Pacific Ocean, including the Pacific Decadal Oscillation (PDO; Xiang and Wang 2013; Watanabe and Yamazaki 2014; Hu et al. 2022a; Hu et al. 2023) and the El Niño-Southern Oscillation (ENSO). Although multiple factors have been identified, the forecasting skill of the ISM onset date remains to be improved (Goswami and Gouda, 2010; Gouda et al., 2021).
Figure 1a shows the correlation between ISM onset and SST anomalies in the preceding winter. Typically, a wintertime El Niño event tends to be followed by delayed ISM onset, and the opposite is often true for a La Niña event (Joseph et al. 2006; Ordoñez et al. 2016; Preenu et al. 2017; Hu et al. 2022a). Previous studies have revealed various pathways through which the ENSO modulates monsoon onset (Figure 1b), including the tropical tropospheric temperature (Chiang and Sobel 2002; Zhang et al. 2016; Hu et al. 2021), the Walker circulation (Wang et al. 2017; Wu and Mao 2019; Hu et al. 2022a), and the western North Pacific (WNP) anticyclone (Xie et al. 2016; Li et al. 2017; Zhang et al. 2017). For instance, significant warming of the tropical troposphere in response to El Niño convections can reduce the climatological land–sea thermal contrast, leading to delayed ISM onset (Figure 1c). Furthermore, the SST gradient in the tropical Pacific induces a descending motion and low-level divergence in the WNP, known as the Walker circulation (Figure 1c). Because of its geographical location, such descent and divergence may more directly affect monsoon onset over the South China Sea than over India (Hu et al. 2020; Hu et al. 2022a; Hu et al. 2022b). However, the Walker circulation can also contribute to the WNP anticyclone (Wang et al. 2000; Xie et al. 2016; Li et al. 2017) and thus indirectly modulate ISM onset. Specifically, the anomalous easterly winds to the south of the WNP anticyclone can extend westward and reach the northern Indian Ocean (Xie et al. 2016; Hu et al. 2022a; Hu et al. 2023). Such easterly winds hinder the firm establishment of monsoonal southwesterly winds, thus leading to delayed ISM onset (Figure 1d). In summary, by modulating the above three tropical pathways
(tropospheric temperature, Walker circulation, and WNP anticyclone), the preceding El Niño (La Niña) event exhibits an in-phase relationship with Indian summer monsoon onset, which tends to be delayed (advanced) after El Niño (La Niña) event occurrence.

Figure 1. The impacts of preceding winter ENSO on the following ISM onset. (a) The correlation between ISM onset and the SST anomalies in the preceding winter (DJF). (b) The correlation between the preceding winter Niño3.4 index and the following May SST anomalies. (c) The correlation between the preceding winter Niño3.4 index and velocity potential at 850 hPa (contours) and tropospheric temperature (shadings). (d) The correlation between the preceding winter Niño3.4 index and precipitation (shadings) and winds at 850 hPa (vectors). The dots region indicates the correlation is significant at the 90% confidence level. The black rectangles highlight the key area of the Niño3.4 index (5°S–5°N, 120°–170°W).

In addition to tropical SST anomalies such as the ENSO, extratropical SST anomalies may modulate monsoon onset (Figure 1a; Hu et al. 2022a; Hu et al. 2022b; Hu et al. 2023). SST anomalies in the North Pacific (poleward of 20°N) mainly consist of two dominant modes: the PDO and the Victoria Mode (VM). Given the
similarities in the spatial structure between the ENSO and PDO, the latter can also influence monsoon onset via tropical pathways such as the tropospheric temperature (Hu et al. 2022a; Hu et al. 2023). However, compared to the equatorially confined SST anomalies associated with the ENSO, the PDO exhibits a stronger signal in the extratropical North Pacific (Deser et al. 2010; Newman et al. 2016; Liu and Di Lorenzo 2018). In recent studies, it has been suggested that the PDO modulates monsoon onset by exciting an extratropical Rossby wave train (Hu et al. 2022a; Hu et al. 2023). Such a Rossby wave train is closely related to vertical motion and SST anomalies in the subtropical North Pacific and exhibits strong interactions with the basic flow and synoptic-scale eddies (Hu et al. 2022a; Hu et al. 2023).

Orthogonal to and independent of the PDO, the VM is the second dominant mode of North Pacific variability (Ding et al. 2015; Pu et al. 2019; Zou et al. 2020; Hu et al. 2022b). Closely linked to the North Pacific Oscillation and thermal forcing over the Tibetan Plateau, the VM features a tripole-like anomalous SST pattern in the extratropical North Pacific (Bond et al. 2003; Ding et al. 2015; Chen et al. 2021; Yu et al. 2022). In previous studies, the wide-ranging climate impacts of the VM have been documented, for example, subsequently triggering the ENSO through the seasonal footprint mechanism and the trade wind charging mechanism (Ding et al. 2015; Li et al. 2019; Ding et al. 2022; Ji et al. 2023). The VM can also influence tropical cyclone activity over the WNP (Zhang et al. 2013; Pu et al. 2019; Dai et al. 2022), winter precipitation over South China (Zou et al. 2020), the location of the South Asian high (Yang et al. 2022), and the intensity and onset of the South China Sea summer
monsoon (Ding et al. 2018; Hu et al. 2022b; Chen et al. 2023).

However, in contrast to the ENSO and PDO (Hu et al. 2022a; Hu et al. 2023; and references therein), the impacts of the North Pacific VM on ISM onset remain elusive. The VM, similar to the PDO, exhibits significant SST anomalies in the extratropical North Pacific. Could the VM also influence monsoon onset by exciting a Rossby wave train? This is the scientific question we aim to answer. The rest of this study is organized as follows: in Section 2, the datasets and methods are described. The statistical relationship and dynamic mechanisms between the VM and ISM onset are investigated in Section 3. Finally, a summary and discussion are presented in Section 4.

2. Data and methods

The onset date of the ISM was derived from the Indian Meteorological Department (Ananthakrishnan and Soman 1988; Joseph et al. 1994; Wang et al. 2009), which mainly emphasizes the sharp and sustained increase in rainfall over Kerala (located in southwestern India). However, local rainfall can be contaminated by small-scale disturbances unrelated to large-scale monsoonal circulation, which may result in a “bogus” monsoon onset (Wang et al. 2009; Ordoñez et al. 2016). As such, in recent years, the Indian Meteorological Department adopted the objective methods proposed by Joseph et al. (2006) and Pai and Rajeevan (2009), which also consider the occurrence of active convection and the establishment of monsoonal flow. The mean ISM onset date from 1948–2022 is May 31, and the standard deviation is 7.3
days. Following previous studies on ISM onset (Xiang and Wang 2013; Watanabe and Yamazaki 2014; Hu et al. 2023), in this study, we mainly focused on the monthly mean field of May, the transition month of the Asian summer monsoon.

The monthly mean reanalysis and observational datasets employed in this study include: (a) National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data with a horizontal resolution of 2.5°×2.5° (Kalnay et al. 1996); (b) Precipitation Reconstruction (PREC) data with a horizontal resolution of 2.5°×2.5° (Chen et al. 2002); and (c) Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) data with a horizontal resolution of 1.0°×1.0° (Rayner et al. 2003). All the above datasets cover the analysis period of 75 years (1948–2022). Following previous studies (e.g., Bond et al. (2003) and Ding et al. (2015)), the VM is defined as the second dominant mode of North Pacific SST anomalies (i.e., EOF2), and the corresponding principal component is regarded as the VM index (i.e., PC2). The statistical significance of the linear correlation and regression are estimated by the two-sided Student’s t test (Wilks 2019).

In the previous studies, it has been noted that a reduced meridional land–sea thermal contrast tends to delay ISM onset (e.g., Watanabe and Yamazaki 2014). Through the analysis of the extratropical Rossby wave train pathway, it is found that the May North Pacific VM could cool the airmass over northwestern India to modify the land–sea thermal contrast, as described in Section 3.2. Therefore, conforming with previous studies (Bawiskar 2009, Liu and Zhu 2021, Lenka et al. 2023), the tropospheric temperature gradient (TTG) is defined to characterize the meridional
sea–land thermal contrast:

$$TTG = \partial_y(TT)$$

where TT is the troposphere temperature, i.e., the vertically averaged air temperature from 850–200 hPa. $TTG < 0$ indicates a reduced land–sea thermal contrast.

To investigate the steady atmospheric response to divergence forcing, the linear baroclinic model (LBM) is employed in this study (Watanabe and Kimoto, 2000; Zhang et al., 2023). The LBM has a horizontal resolution of T42 and vertical 20 sigma levels. The May climatology from 1981 to 2010 is used as the background. In this work, the LBM is integrated for 34 days by the time integration method, and the average data from 25 to 34 days are considered the steady response.

3. Impact of the North Pacific VM on ISM onset

3.1 Statistical relationship between the VM and ISM onset

Figure 2a shows the correlation coefficient between the ISM onset date and the SST anomalies in May. Corresponding to delayed monsoon onset, significant warm SST anomalies emerge in the equatorial central Pacific, which resemble the decaying phase of an El Niño event and are consistent with previous studies (Hu et al. 2022a). Moreover, cold SST anomalies are highly evident in the subtropical North Pacific and are even more pronounced than those in the preceding winter (Figure 1a). To remove the signals of the wintertime ENSO, Figure 2b further shows the partial correlation between the monsoon onset date and SST anomalies. While the SST anomalies in the equatorial central-eastern Pacific are no longer significant, tripole-like SST anomalies
still remain in the North Pacific. Such North Pacific SST anomalies resemble the canonical structure of the VM shown in Figure 2c, with a spatial correlation coefficient of 0.83. This SST pattern features significant cold SST anomalies approximately 20°-35°N surrounded by warm SST anomalies to the south (5°-20°N) and north (45°-60°N). The close linkage between ISM onset and the VM is further confirmed in Figure 2d, which shows the correlation between the monsoon onset date and the VM index in each month. While ISM onset is significantly correlated with the VM index in the springtime (March-April-May), the correlation coefficient is the highest in May. As such, in this study, we mainly focused on circulation anomalies in May, consistent with previous studies on ISM onset (Watanabe and Yamazaki 2014; Hu et al. 2023). Notably, the correlation between the VM and ISM onset is largely independent of the occurrence of a preceding ENSO event, as revealed by the partial correlation shown in Figure 2d.
Figure 2. The correlation coefficient between (a) the ISM onset date and the SST anomalies in May, (c) May VM index and SST anomalies. (b) The same as (a), but removing the preceding winter Niño3.4 index. The spatial correlation coefficient between (b) and (c) is shown in the upper-right corner of (c). (d) The correlation coefficient between the ISM onset date and VM index (blue line), and the partial correlation between them after removing the preceding winter Niño3.4 index (red line). The horizontal gray dashed lines indicate the 90% and 95% confidence levels. The dots denote the correlation coefficient passing the 90% confidence level.

The normalized time series of ISM onset and the VM index in May is shown in Figure 3. For comparison, the normalized Niño 3.4 index in the preceding winter is also presented. Overall, the preceding ENSO and VM in May exhibit an in-phase variation with ISM onset. The correlation coefficient of ISM onset with the ENSO is 0.291 and with the VM is 0.288, which is significant at the 95% confidence level. Moreover, the linkage between the wintertime ENSO and VM in May is very weak, with a correlation coefficient of -0.04. This result suggests that the importance of the VM for ISM onset is comparable to that of the ENSO, and the VM is largely independent of the preceding ENSO. To avoid the influence of global warming on the shift in onset dates, a 9-year highpass filter is applied to the ISM onset date and the VM index in May, and the results are shown in Figure S1. After removing the long-term trend and the interdecadal background, the interannual relationship between ISM onset and the VM in May remains very notable, with a correlation coefficient of 0.38, which is significant at the 99% confidence level. Therefore, the VM in the North Pacific may be used as an independent and major factor in influencing and forecasting ISM onset.
Figure 3. The time series of normalized ISM onset data (gray bars), VM index in May (red line), and preceding winter Niño3.4 index (blue line).

The close linkage between the North Pacific VM and ISM onset is further confirmed in Figure 4a, which shows the correlation between the VM index and rainfall as well as low-level circulation in May. Corresponding to the positive phase of the VM, reduced rainfall emerged in the Arabian Sea, Bay of Bengal, and Indo-China Peninsula. In addition, an anomalous anticyclone is observed in the North Indian Ocean, with anomalous easterly winds extending from the Bay of Bengal to the Arabian Sea. Notably, the anomalous anticyclone is located to the west of the observed reduced rainfall, which can be considered as the equatorial Rossby wave response to diabatic cooling (Matsuno 1966; Gill 1980; Hu et al. 2022a). The above reduced rainfall and anomalous easterly winds are consistent with the delayed ISM onset associated precipitation and circulation anomalies (Figure 4b). As outlined in many previous studies, the firm establishment of low-level southwesterly winds over the Arabian Sea is a prerequisite for ISM onset (Joseph et al. 2006; Pai and Rajeevan 2009; Wang et al. 2009). The anomalous easterly winds in the Arabian Sea hinder the
establishment of monsoonal southwesterly winds and moisture transport, thereby resulting in delayed ISM onset. Hence, this pattern further confirms the connection between the May North Pacific VM and ISM onset, i.e., the former tends to delay ISM onset.

![Figure 4](image)

Figure 4. (a) The correlation coefficient between May VM index and precipitation (shadings) and winds at 850 hPa (vectors). (b) The same as in (a), but for the ISM onset date and precipitation (shadings) and winds at 850 hPa (vectors).

3.2 Dynamic mechanisms linking the VM and ISM onset

The above analysis confirms that there is indeed a statistically significant and robust linkage between the North Pacific VM and monsoon onset. The next and more important scientific question is as follows: by what mechanisms does the VM affect ISM onset? It has been previously revealed that the ENSO and PDO can modulate ISM onset through the anomalous Walker circulation (Hu et al. 2022a; Hu et al. 2023), and it has been recently suggested that the VM in May modulates monsoon onset over the South China Sea via large-scale divergent circulation (Hu et al. 2022b). Thus, Figure 5 shows an examination of the velocity potential anomalies in the upper and lower troposphere associated with the North Pacific VM. Upper-level divergence is
only significant to the northeast of the Hawaii Islands. Moreover, in the lower level, there occurs significant convergence between the dateline and 240°E, as well as significant divergence over the Indo-China Peninsula, South China Sea, Philippine Sea, and East China Sea. These large-scale vertical motions may be driven by the SST gradient in the Pacific Ocean. Notably, low-level divergence over the South China Sea and the Indo-China Peninsula can contribute to reduced rainfall therein. This can stimulate the equatorial Rossby wave response to the west, which leads to anomalous easterly winds (Figure 4). Such easterly winds prevent the firm establishment of monsoonal southwesterly winds and reduce water vapor transport from the Indian Ocean, thus contributing to delayed ISM onset. Therefore, we can conclude that, similar to the ENSO and PDO, the North Pacific VM can also modulate ISM onset through the tropical pathway, namely, large-scale divergent circulation and the equatorial Rossby wave response.

![Figure 5](image_url)

Figure 5. The correlation coefficient between the May VMI and velocity potential at (a) 200 hPa, (b) 850 hPa. The dots denote the correlation coefficient passing the 90%
confidence level.

Given that another pathway in which the ENSO and PDO can modulate ISM onset involves the tropospheric temperature (Hu et al. 2022a; Hu et al. 2023), Figure 6a shows an analysis of the temperature anomalies associated with the North Pacific VM. In sharp contrast to the ENSO and PDO, the temperature anomalies in the tropical region are rather weak and not significant. This probably occurs because the VM is primarily an extratropical mode, which does not exhibit significant SST anomalies except in the tropical central Pacific (Figure 2c). However, alternating positive and negative air temperature anomalies emerge over the extratropics in the Northern Hemisphere. For example, warm air temperature anomalies are observed around the Hawaii Islands, Bering Sea, and Eastern Europe. In addition, cold air temperature anomalies emerge over the mid-latitude North Pacific, Eastern Canada and Greenland, and to the northwest of India. Notably, ISM circulation is largely driven by the land–sea thermal contrast, namely, the contrast between the warm Eurasian continent and the cold Indian Ocean (Webster et al. 1998; Chen et al. 2023; Hu et al. 2023; Lenka et al. 2023). The cold airmass to the northwest of India induced by the positive phase of the VM in May reduces the meridional troposphere temperature gradient (Figure 6b). Consequently, this reduced land–sea sea thermal contrast induces anomalous easterly winds and thus delays ISM onset.
Figure 6. (a) The correlation coefficient between the May VM index and troposphere temperature (TT; 850–200 hPa vertically averaged air temperature; shadings), and near-surface 2m temperature (contours). (b) The same as in (a), but for the May VM index and meridional troposphere temperature gradient (TTG). The dots denote the correlation coefficient passing the 90% confidence level.

The positive and negative temperature anomalies in the extratropics in the Northern Hemisphere suggest the possible existence of a Rossby wave train. To confirm this speculation, Figure 7 shows the upper-level geopotential height anomalies regressed onto the VM index in May, as well as the associated wave activity fluxes (Takaya and Nakamura 2001). The upper-tropospheric geopotential height anomalies correspond well to the temperature anomalies shown in Figure 6, with cold (warm) air temperature anomalies conforming with negative (positive) geopotential height anomalies. For example, pronounced positive geopotential height anomalies occur over the Bering Sea, while negative geopotential height anomalies occur over the mid-latitude North Pacific. Such a dipole-like geopotential height
pattern is referred to the North Pacific Oscillation/Western Pacific teleconnection pattern (Aru et al. 2021; Aru et al. 2022). The wave activity fluxes shown in Figure 7 reveal two Rossby wave trains originating from the mid-latitude North Pacific. One is propagating southward and reaches the tropical Pacific, which is consistent with the recent study of Zhao et al. (2023a, 2023b). The other Rossby wave train begins by propagating northeastward, reaching North America, passing through the North Atlantic and Europe, and arriving in northwestern India. The anomalous low pressure in northwest India results in local cold air temperature anomalies, thus affecting the land–sea thermal contrast and ISM onset.

How does the VM excite the above Rossby wave train? Figure 8a shows the regression pattern of the mid-tropospheric vertical velocity and upper-tropospheric Rossby wave source onto the May VM. A pronounced ascending motion and notable upper-level divergence emerge in the Gulf of Alaska. This divergence forms a strong Rossby wave source and may trigger the stationary Rossby wave train (Sardeshmukh and Hoskins, 1988; Hu et al., 2017). To confirm the important role of this Rossby wave source, upper-level divergence forcing over (50°-60°N, 205°-225°E) is
prescribed in the LBM. Figure 8b shows the steady atmospheric response, and an extratropical Rossby wave train can be observed. Despite several small differences, certain important observational features are captured by the LBM. For example, the negative geopotential height in the subtropical North Pacific and the positive geopotential height in the Gulf of Alaska are clearly observed. In particular, the negative geopotential height in northwest India is captured by the LBM. As previously mentioned, such geopotential height anomalies result in low temperatures and reduce the land–sea thermal contrast. Thus, in addition to the aforementioned tropical pathway, the North Pacific VM can modulate ISM onset through an extratropical pathway, namely, the Rossby wave train and meridional temperature gradient.

![Figure 8](image_url)

Figure 8. (a) Regression of the vertical velocity at 500 hPa (contours) and Rossby wave source at 200 hPa (shadings) onto May VMI. (b) The steady response of geopotential height at 200 hPa (shadings; units: m) in the LBM, which is forced by the idealized upper-level divergence (gray contours; units: 10^{-5} s^{-1}) in the Gulf of Alaska (50°-60°N, 205°-225°E). The zonal mean geopotential height is removed to
highlight the Rossby wave train.

4. Summary and discussion

In previous work, the importance of preceding ENSO events for ISM onset has been noted, which mainly involves tropical pathways. Based on reanalysis datasets and model simulations, in this study, we investigated the statistical relationship and the dynamic mechanisms linking the North Pacific VM and ISM onset. The positive phase of the VM, featuring cold SST anomalies in the mid-latitude North Pacific sandwiched by warm SST anomalies to both the south and north, is conducive to delayed ISM onset. As summarized in Figure 9, the North Pacific VM modulates ISM onset via two distinct mechanisms: the tropical pathway and the extratropical pathway. Specifically, the SST gradient in the Pacific Ocean associated with the VM induces low-level convergence in the tropical central Pacific and divergences over the Indo-China Peninsula and WNP. This low-level divergence results in reduced rainfall, which serves as diabatic cooling forcing and excites the equatorial Rossby wave response to the west. The anomalous easterly winds to the south of the anticyclone hinder the establishment of monsoonal southwesterly winds and moisture transport, thus resulting in delayed ISM onset.

In addition, the North Pacific VM is accompanied by North Pacific Oscillation-like geopotential height anomalies in the upper-level, which excite a Rossby wave train that propagates downstream. This extratropical Rossby wave train can yield negative geopotential height anomalies and cold air temperature anomalies to the northwest of India, which can reduce the climatological land–sea thermal
contrast. Therefore, the seasonal transition in the meridional temperature gradient and ISM onset is delayed. Notably, the tropical pathway predominantly carries the signal westward, while the extratropical pathway mainly carries the signal eastward. Due to the spherical nature of the Earth, the VM signals carried along these two pathways intersect in the Indian region and jointly modulate ISM onset.

Figure 9. The schematic diagram shows the two different mechanisms considered in this study, by which the May VM affects the ISM onset. Red (blue) shadings indicate the May VM-associated SST anomalies. The tropical pathway: purple arrows present the large-scale divergent circulation; orange anticyclone represents the tropical Rossby wave response to the decreased rainfall over the Indo-China Peninsula. The extratropical pathway: red anticyclones and blue cyclones with yellow dashed line denote the stationary Rossby wave train.

The above conclusion is based on monthly average data, as daily or pentad precipitation data for the 1971–2022 period are not available. When utilizing the exact ISM onset date, the in-phase relationship between the May VM and ISM onset remains robust. Figure S2 shows the correlation between the May VM index and 850 hPa winds and the tropospheric temperature averaged over the 23 May–07 June period. This three-pentad duration includes one standard deviation (7.3 days) before and after the mean ISM onset date (31 May), which is more closely linked to monsoon onset. Notably, the results shown in Figure S2 (23 May–07 June) closely resemble those shown in Figures 4a and 6a (May). Namely, the close relationship between the VM in May and anomalous low-level easterly winds extends from the
Bay of Bengal to the Arabian Sea (Figures S2a and 4a), and the extratropical geopotential height anomalies associated with the Rossby wave train (Figures S2b and 6a). In addition, several researchers investigated monsoon onset using monthly mean data of May (Xiang and Wang 2013; Watanabe and Yamazaki 2014; Hu et al. 2022; Hu et al. 2023). In conclusion, the suitability of monthly mean data for analyzing monsoon onset depends on the scientific question considered. Monthly mean fields may not be adequate for those examining high-frequency disturbances on the exact date of monsoon onset. However, for researchers focusing on the modulation of large-scale circulation on interannual monsoon onset (i.e., advanced or delayed), monthly mean data can be appropriate (Xiang and Wang 2013; Watanabe and Yamazaki 2014; Hu et al. 2022; Hu et al. 2023).

In this study, we clarified two distinct mechanisms through which the May North Pacific VM affects ISM onset: the tropical Rossby response and the extratropical stationary Rossby wave train. This is an extension of the work of Hu et al. (2022), who investigated the impact of the PDO on Asian summer monsoon onset. However, as outlined in the Introduction, the VM and PDO are the first two modes of North Pacific variability, and they are orthogonal and linearly independent of each other. Consequently, exploring the connection between the VM and ISM onset is very important for enhancing the accuracy of monsoon onset predictions. Nonetheless, it should be noted that this study primarily relies on reanalysis and observational datasets. Thus, more sophisticated model simulations are imperative for validating above pathways and mechanisms, especially their relative contributions. Furthermore,
in addition to the ENSO, PDO, and VM in the Pacific Ocean, the SST variability in the Indian Ocean is very prominent (Athira et al., 2020). For example, the Indian Ocean Dipole (IOD) can also modulate ISM onset (Sankar et al. 2011; Lenka et al. 2023), which is characterized by out-of-phase variation in the SST anomalies between the tropical western and southeastern Indian Oceans (Saji et al. 1999; Chen et al. 2023). Sankar et al. (2011) investigated the roles of the ENSO and IOD in controlling ISM onset and they noted that La Niña and negative IOD events are favorable for advanced monsoon onset. This underscores the need to explore the combined effect of the ENSO, IOD, and VM in the future.

Competing Interest

The authors declare that they have no conflict of interest.

Data availability

The National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data is available from http://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.html.

The Precipitation Reconstruction (PREC) data is available from https://www.psl.noaa.gov/data/gridded/data.prec.html.

The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) data is available from http://www.metoffice.gov.uk/hadobs/hadisst.
Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grants 42141019, 41831175, 42205021, 91937302, and 41721004).

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Written information consent for publication was obtained from all participants.

References

https://doi.org/10.1016/j.atmosres.2022.106435

boreal spring on the Indian Ocean Dipole in the following autumn and possible
Oscillation affected peak season tropical cyclone genesis over the western North
-9326/ac89a1.
Deepa, R., Oh, J.H., 2014. Indian summer monsoon onset vortex formation during
013-1057-z.
Ding, R., Li, J., Tseng, Y.H., Li, J., Sun, C., Xie, F., 2018. Influences of the North
Pacific Victoria mode on the South China Sea summer monsoon. Atmosphere 9,
Ding, R., Li, J., Tseng, Y.H., Sun, C., Guo, Y., 2015. The Victoria mode in the North
Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys.
Res. Atmos. 120, 27-45. doi:https://doi.org/10.1002/2014JD022221.
Ding, R., Tseng, Y.H., Di, Lorenzo. E., Shi, L., Li, J., Yu, J.Y., Wang, C., Sun, C., Luo,
J.J., Ha, K.J., 2022. Multi-year El Niño events tied to the North Pacific
skill and lead in long-range forecasting of monsoon variability. Theor Appl
Climatol 144, 1161–1170. https://doi.org/10.1007/s00704-021-03589-x

Watanabe, T., Yamazaki, K., 2014. Decadal-Scale Variation of South Asian Summer

Zhang, J.Y., Wang, L., Yang, S., Chen, W., Huangfu, J., 2016. Decadal changes of the

CRediT authorship contribution statement

Suqin Zhang: Data curation, Investigation, Formal analysis, Software, Validation, Writing – original draft. Peng Hu: Conceptualization, Methodology, Formal analysis, Writing – review & editing, Funding acquisition. Gang Huang: Supervision, Writing – review & editing, Funding acquisition, Project administration. Xia Qu: Supervision, Writing – review & editing.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Highlights:

- The North Pacific Victoria Mode in May can delay the onset of the Indian summer monsoon via the tropical and extratropical pathways.

- The tropical pathway includes the large-scale divergent circulation and the equatorial Rossby wave response.

- The extratropical pathway includes the stationary Rossby wave train and the land-sea thermal contrast.