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Abstract  

Accurate sub-seasonal (2-8 weeks) prediction of monsoon precipitation is crucial for  

mitigating flood and heatwave disasters caused by intra-seasonal variability (ISV). However,  

current state-of-the-art sub-seasonal-to-seasonal (S2S) models have limited prediction skills  

beyond one week when predicting weekly precipitation. Our findings suggest that  

predictability primarily arises from strong ISV events, and the prediction skills for ISV events  

depend on the propagation stability of preceding signals, regardless of models. This allows us  

to identify opportunities and barriers (OBs) within S2S models, clarifying what the models can  

and cannot achieve in ISV event prediction. Focusing on the complex East Asian summer  

monsoon (EASM), we discover that stable propagation of Eurasian and tropical atmospheric  

wave trains towards East Asia serves as an opportunity. This opportunity offers a one-week  

leading prediction skill of up to 0.85 and skillful prediction up to 13 days ahead for 43% of all  

ISV events. However, the Tibetan Plateau barrier highlights the limitation of EASM  

predictability. Identifying these OBs will help us gain confidence in making more accurate sub- 

seasonal prediction.   

Significance Statements  

Accurate sub-seasonal prediction (2-8 weeks) is urgently needed to facilitate effective disaster  

prevention, application of renewable energy, logistical planning, agricultural production, and  

decision-making. Current scientific research and practical applications typically focus on  

predicting all ISV events, which renders the low-average prediction skill relatively less helpful.  

In response, we propose an innovative idea for performing sub-seasonal prediction: predicting  

only what the models can accurately predict. The central idea is to identify the types of ISV  

events in which the model exhibits high prediction skills (opportunities) and those where the  

model’s skills are limited (barriers). Compared to the average forecast skill of all events,  

accurate predictions of specific events can be more beneficial to us.   

Keywords: Opportunities and barriers; Sub-seasonal prediction; East Asian summer monsoon;  

Precipitation  
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Introduction  

The record-breaking East Asian summer monsoon (EASM) precipitation in 2020 had a  

widespread impact on millions of people across East Asia, resulting in more than 260 human  

casualties and an economic loss exceeding 16 billion US dollars in China, Japan, and South  

Korea (Hirockawa et al. 2020; Takaya et al. 2020; Wei et al. 2020; KMA 2021; Park et al. 2021).  

In 2022, the high-intensity and prolonged heat wave and extreme precipitation also hit different  

parts of East Asia due to internal variability and global warming, leading to a direct economic  

loss of 4.7 billion US dollars in China (He et al. 2023; Jiang et al. 2023; Sheng et al. 2023).  

These extreme precipitation and heat wave events, influenced by intra-seasonal variability  

(ISV), often manifest as a series of wet and dry pulses on the sub-seasonal time scale (Zhang  

2013; Hsu et al. 2016; Ding et al. 2021; Liu et al. 2022), and have become more frequent and  

intense associated with the global warming (Meehl and Tebaldi 2004; Liu et al. 2022).  

Accurate prediction of precipitation on the sub-seasonal time scale is crucial for various  

sectors, including renewable energy application, disaster prevention, logistical planning,   

agricultural production, and decision-making (Webster and Hoyos 2004). Current state-of-the- 

art sub-seasonal-to-seasonal (S2S) prediction models, however, exhibit a relatively low  

prediction skill (with a correlation coefficient < 0.5) beyond one week for weekly monsoon  

precipitation anomaly forecasts (Li and Robertson 2015; de Andrade et al. 2019), particularly  

for the EASM (Liu et al. 2022).   

In the pursuit of sub-seasonal prediction, researchers have attempted to identify strategic  

windows of opportunity that provide specific climate phenomena or conditions for a  

predictable signal above the weather noise (Sigmond et al. 2013; Board et al. 2016; Lim et al.  

2019; Mariotti et al. 2020; Singh et al. 2024). However, accurately predicting EASM ISV poses  

a particular challenge due to the complex tropical-extratropical interaction and Tibetan  

Plateau’s influence (Stan et al. 2017; Liu et al. 2022). Multiple factors contribute to the large  

magnitude of EASM ISV (Ren et al. 2022), including the northwestward-propagating boreal- 

summer intra-seasonal oscillation (Chen et al. 2001; Mao and Chan 2005), Tibetan Plateau  

heating (Liu et al. 2020b), the quasi-biweekly oscillation (Yang et al. 2010; Hsu et al. 2016)  

and the southeastward-propagating mid-to-high latitude wave trains (Yang et al. 2017; Gao et  

al. 2018).   
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To date, it remains unclear whether the current state-of-the-art dynamic prediction models  

can effectively capture these preceding signals to enhance sub-seasonal prediction for each  

EASM ISV event. Addressing the above issue could help enhance the sub-seasonal prediction  

skill for some ISV events, thereby improving its practical application. Our strategy is to  

differentiate the capabilities of current state-of-the-art S2S prediction models (the opportunities)  

from their limitations (the barriers), and gain a deeper understanding of why S2S models  

succeed in capturing certain opportunities and yet fail to overcome specific barriers.  

Specifically, we first categorized ISV events into well-predicted and poorly-predicted events  

based on the model performance. Then, we constructed the observed preceding signals for these  

two types of events by examining explicable physical processes, which can be considered as  

the opportunities and barriers (OBs) for S2S model prediction. When the initial signals  

resemble the opportunities, it indicates a higher accuracy and confidence level in the prediction  

results, providing a reliable signal for us to raise the alarm for potential disasters. The  

identification of prediction barriers also underscores the limitation of monsoon predictability.   

Here we used the wide-ranging database from 12 models in the S2S prediction project,  

which was jointly launched by World Weather Research Programme (WWRP) and World  

Climate Research Programme (WCRP) to meet the increasing need for accurate S2S prediction  

(Vitart et al. 2017). The longest reforecasts (hindcasts) can extend up to 65 days.   

  

  

Data and methods  

Observation and prediction data. We used daily Climate Prediction Center (CPC) global  

precipitation data with a high resolution of 0.5° × 0.5°, provided by the National Oceanic and  

Atmospheric Administration (NOAA) (Xie et al. 2007), owing to their extensive temporal  

coverage extending from 1979 to 2021 and their good ability in capturing EASM ISV (Liu et  

al. 2020a). To represent tropical large-scale organized deep convection, daily outgoing  

longwave radiation (OLR) data with a resolution of 2.5° × 2.5° provided by the NOAA were  

used (Liebmann and Smith 1996). Daily winds and geopotential height at 200 hPa, obtained  

from the National Centers for Environmental Prediction (NCEP) Reanalysis II dataset  

(Kanamitsu et al. 2002), were used to composite the extratropical intra-seasonal signal. The  

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 10/09/24 05:37 AM UTC



5
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0055.1.

 

study period covered the boreal summer from 1979 to 2021. All EASM ISV events during 

broad summer season from May to September were defined and analyzed. The seasonal 

evolution of EASM ISV, with a preceding signal evolving from mid-to-high latitudes in early 

summer and from the tropics in late summer (Liu et al. 2020a), was not the focus here and 

should be investigated in the near future.  

To study the sub-seasonal prediction of EASM precipitation, the hindcasts of precipitation 

from 12 global prediction systems, which participated in the S2S prediction project (Vitart et 

al. 2017), were investigated (Table 1). These models had different ensemble sizes for their 

hindcasts, and the multi-ensemble mean of each model was used. To make a fair comparison 

between other S2S models with the European Centre for Medium-range Weather Forecasts 

(ECMWF) model, which exhibited the best prediction skill and conducted hindcast twice per 

week (on Monday and Thursday), we also adopted the same frequency for the Institute of 

Atmospheric Physics Chinese Academy of Sciences (IAP) and NCEP models, both of which 

provided daily hindcasts.  
S2S model Time 

range 
(days) 

Grid 
resolution 

Hindcast 
frequency 

Hindcast 
period 

Ensemble 
size 

Model 
version 
year 

BoM  62 144 × 72 6/month 1981–2013 33 2014 
CMA  60 240 × 121 2/week 2005–2019 4 2020 
CNR-ISAC  31 240 × 121 Every 5 days 1981–2010 5 2017 
CNRM 47 240 × 121 Weekly 1993–2017 10 2019 
ECCC  32 240 × 121 Weekly 1998–2017 4 2020 
ECMWF  45 240 × 121 2/week 1999–2018 11 2019 
HMCR 61 240 × 121 Weekly 1985–2010 10 2020 
JMA  33 240 × 121 2/month 1981–2020 13 2021 
KMA  60 240 × 121 4/month 1991–2016 3 2021 
NCEP  44 240 × 121 Daily 1999–2010 4 2011 
UKMO  
IAP-CAS 

60 
65 

240 × 121 
240 × 121 

4/month 
Daily 

1993–2016 
1999–2018 

7 
4 

2019 
2019 

Table 1. Main features of the 12 global prediction systems in the S2S database.  
  

ISV of EASM precipitation. The intra-seasonal EASM precipitation mainly falls in the 12-40  

day range (Liu et al. 2020a; Liu et al. 2022). We identify the leading ISV mode by extracting  

the first empirical orthogonal function (EOF) mode of summer (May‒September) 12-40-day  

bandpass-filtered precipitation over the EASM (20°‒45° N, 100°‒145° E) land regions. The  

Lanczos filter with 121 weights was used to perform the bandpass filtering (Duchon 1979).   

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 10/09/24 05:37 AM UTC



7
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0055.1.

6
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0055.1.

 

ISV events. An ISV event was defined when the maxima or minima of 12‒40-day bandpass-

filtered EASM precipitation index (which will be defined later) anomaly were > 0.5 standard 

deviation units for wet events, or < −0.5 standard deviation units for dry events. The central 

day of an event, referred to as Day 0, was determined as the day when the filtered precipitation 

index anomaly reached its peak or lowest point. Events primarily caused by exceptionally 

strong synoptic disturbances were excluded. This was done by excluding cases with raw weekly 

precipitation index around Day 0 below the climatology for wet events or above the 

climatology for dry events. 

Compositing and significance. The correlation coefficient between predicted and observed 

weekly EASM precipitation index anomalies for any given day leading prediction was 

calculated using 840 ECMWF hindcasts for the summer season spanning from 1999 to 2018. 

The anomalies in observations and hindcasts were calculated relative to their respective daily 

climatology. The twice-per-week hindcast from the ECMWF is only available for Monday or 

Thursday, thus the nearest hindcast to the target initial day was selected for each prediction. 

This selection process ensured a minimal bias of one day or no bias. Any prediction of ISV 

event that required a hindcast from Saturday was excluded from the analysis due to the 

hindcast’s two-day difference from the target initial day (Supplementary Fig. 1).  

To represent the preceding signals of ISV events, time-lagged compositing was performed 

with respect to Day 0 of each event. For sub-seasonal prediction evaluation, a correlation 

coefficient of 0.5 was used as the threshold to determine whether a prediction was skillful or 

not. For composites, a two-tailed Student’s t-test was used to test statistical significance. The 

Monte Carlo method with 10,000 iterations was used for testing the improvement of the 

prediction skill. For the filtered signal, the effective degree of freedom was considered to test 

the significance (Zwiers and von Storch 1995), which is defined as 𝑁𝑁𝑒𝑒 = 𝑁𝑁(1 − 𝑟𝑟1)/(1 + 𝑟𝑟1), 

where 𝑁𝑁 is the sample size of total days and 𝑟𝑟1 is the lag-one autocorrelation. The significance 

of multi-model mean prediction skill was tested using the smallest effective degree of freedom 

among the 12 models.  

 

 

Results 
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Limited skill of S2S models in predicting sub-seasonal EASM precipitation. To evaluate the  

sub-seasonal prediction skill of weekly precipitation which is primarily dominated by  

predicting the ISV, we focused on the leading ISV mode of EASM precipitation. This mode  

exhibits a uniform spatial structure over southern EASM regions, encompassing areas south of  

the Yangtze River and western Japan (Fig. 1a). We used this EOF1 pattern in the observation  

to define the monsoon domain considered in this study. In both observations and predictions,  

the raw daily precipitation averaged over the southern EASM regions, i.e., the wet regions in  

Fig. 1a with precipitation anomalies > 0.5 mm day−1, was used to define the EASM  

precipitation index.   

  
Fig. 1. EASM ISV and its prediction skill. a Leading mode of EASM ISV represented by the first EOF  
pattern of 12‒40-day bandpass filtered EASM (20°‒45° N, 100°‒145° E) land precipitation anomalies in  
CPC observation from 1979 to 2021. The upper and lower gray lines denote the Yellow and Yangtze rivers,  
respectively. The purple contour delineates the wet EASM regions with precipitation anomalies > 0.5 mm  
day−1. The percentage variance explained by this leading mode is marked on the panel. b Prediction skill of  
weekly EASM precipitation index for 12 S2S models (colored lines) as a function of prediction lead days  
for their respective validation periods (Table 1). Black line denotes the multi-model mean. Solid lines denote  
significant (p < 0.01) skills. c ECMWF predicted event amplitude (mm day−1) of EASM ISV averaged for  
all ISV events (blue line), well-predicted events (orange line), and poorly-predicted events (green line). d  
ECMWF prediction skill of weekly EASM precipitation index for all weeks (blue line, same as in b), weeks  
controlled by well-predicted (orange line) or poorly-predicted (green line) ISV events, and weeks without  
any effect from ISV events (purple line).  
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The multi-model mean of all 12 models displayed a skillful prediction of the weekly  

EASM precipitation index (Fig. 1b), measured by a correlation coefficient > 0.5, only for five  

days in advance for all hindcasts. Notably, among all models, the ECMWF model exhibited the  

highest skill. However, even with its superior performance, the ECMWF model’s skillful  

prediction extended only for up to seven days, being consistent with previous findings of the  

limited sub-seasonal prediction skill for global land precipitation (Li and Robertson 2015; de  

Andrade et al. 2019; Liu et al. 2022; Singh et al. 2024). Here, a seven-day leading prediction  

of weekly precipitation refers to the prediction of the average precipitation for the seventh to  

thirteenth day from the initial time.   

  
Fig. 2. Selection of ISV events from observations. Time series of EASM precipitation index anomaly (gray  
line), its 12‒40-day component (black line), and seven-day running mean (blue line) for a 2020‒2021  
summers and b 1979‒2021 summers in the observation of CPC. Blue and red dots denote centers (Day 0) of  
wet and dry ISV events, respectively. An ISV event is defined when the extrema of the 12‒40-day filtered  
EASM precipitation index anomaly are > 0.5 standard deviation units for a wet event or < −0.5 standard  
deviation units for a dry event; events (circles) having a raw weekly precipitation index centered at Day 0  
below the climatology for wet events, and above the climatology for dry events, are removed (see Methods).  
The hindcast periods of the 12 S2S models are also listed, represented by colored horizonal lines in b.   
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The sub-seasonal prediction skill of S2S models is expected to largely depend on their  

ability to capture the strong EASM ISV events. According to the definition presented in the  

Method section, the EASM precipitation index was used to define the ISV events (Fig. 2a).  

There were 440 EASM ISV events during the period 1979‒2021 (Fig. 2b). Supplementary  

Table 1 presented the top 30 wet and 30 dry events based on their rankings. During the period  

when ECMWF hindcasts were available (1999‒2018), a total of 228 strong EASM ISV events,  

including both wet and dry events, were observed.   

  
Fig. 3. Predicted EASM ISV event amplitude in S2S models. Prediction of EASM ISV event amplitude  
(mm day−1) averaged for all EASM ISV events in each of the 12 S2S models (colored lines) for their own  
validation periods (Table 1), as well as their multi-model mean (black line). The dashed horizontal line  
denotes the average amplitude (3.2 mm day−1) for all observed ISV events from 1999 to 2018. For each  
event, the amplitude is defined as the weekly EASM precipitation index anomaly with respect to climatology,  
with the sign reversed for dry events.  

  

The amplitude of an ISV event was defined as the weekly EASM precipitation index  

anomaly relative to climatology spanning Day 0, with the sign reversed for dry events that had  

negative precipitation anomalies. The 228 events from 1999 to 2018 displayed an average  

amplitude of 3.2 mm day−1 in observations, approximately half of the seasonal mean  

precipitation which stands at 6.0 mm day−1. The wet events were stronger than the dry events,  

with average amplitudes of 3.6 mm day−1 and 2.7 mm day−1, respectively. Overall, the ECMWF  

model initially captures the average ISV event amplitude for the first two days, but the  
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predicted ISV amplitude quickly declined as forecast lead time increased, resulting in an  

average predicted ISV amplitude of 1.2 mm day−1 for a seven-day forecast (Fig. 1c). Similarly,  

other 11 models also exhibited lower predicted ISV amplitude compared to the observations  

(Fig. 3).    

Well-predicted and poorly-predicted ISV events. To unravel the causes of the underestimation  

of ISV amplitude in model prediction, we defined a “prediction score” that represents the ratio  

of predicted to observed ISV amplitude for each event at a given forecast lead time. A higher  

score indicates better prediction for an event, while a negative score signifies model’s incorrect  

prediction of the ISV phase. A well-predicted event required a prediction score > 0.5; otherwise,  

it was defined as a poorly-predicted event. Different threshold selections of prediction score  

did not qualitatively change our results. Among the 228 strong ISV events observed during the  

period 1999‒2018, we identified 98 (43%) well-predicted events and 130 (57%) poorly- 

predicted events based on the seven-day leading prediction score of the ECMWF model. As  

depicted in Fig. 1c, the ECMWF model predicted apparently higher ISV amplitude for well- 

predicted events compared to poorly-predicted events.   

To explore the sub-seasonal prediction skill of weekly EASM precipitation index  

anomalies associated with different strong ISV events, we categorized the targeted weeks in all  

hindcasts into three groups: those dominated by (1) well-predicted ISV events, (2) poorly- 

predicted ISV events, and (3) weeks without any strong ISV events. A targeted week was  

defined as a strong ISV-dominated week if it encompassed Day 0, i.e., the central day, of an  

ISV event.   

For the weeks without any observed ISV events, which accounted for approximately 49%  

of the study period and are less likely to cause flood and heat wave disasters, the ECMWF  

model’s forecast skill for precipitation was limited to six days. However, for ISV-dominated  

weeks, the ECMWF model demonstrated a much better precipitation forecast skill for well- 

predicted events compared to poorly-predicted events (Fig. 1d). The skillful prediction,  

indicated by a correlation coefficient > 0.5, was extended from 5 days for poorly-predicted  

events to 13 days for well-predicted events. For one-week leading prediction, the average  

prediction skill of the ECMWF model for well-predicted events (with a correlation coefficient  

of 0.85) is more than double that for poorly-predicted events (0.38).   
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In most of the other 11 S2S models, the prediction skills for weekly EASM precipitation,  

particularly for events classified as well-predicted compared to those classified as poorly- 

predicted based on the ECMWF prediction, were markedly higher (Fig. 4). Furthermore, for  

the ISV events predicted by both ECMWF and other models, a significant correlation was also  

observed between ECMWF and most of the other models for seven-day leading prediction  

scores. These results suggest that when one ISV event is accurately predicted by the ECMWF  

model, it also exhibits better prediction performance in other S2S models. In other words, the  

sub-seasonal prediction skill of EASM precipitation, regardless of S2S prediction models,  

depends on the characteristics of the ISV event itself.  

  
Fig. 4. ISV event-dependent sub-seasonal prediction skill. Longer prediction extent for skillful prediction  
of weekly EASM precipitation index from control by well-predicted (orange bars) than by poorly-predicted  
(green bars) events in all 12 S2S models. These well- and poorly-predicted ISV events are defined based on  
ECMWF prediction, and only the periods that overlap with ECMWF prediction are analyzed in the other  
models. Stars indicate significant improvement (p < 0.05) based on the Monte Carlo method with 10,000  
iterations. The prediction extent is defined by the last day on which the correlation coefficient is > 0.5.  
Correlation (number over the bar) of seven-day leading prediction scores for all overlapped ISV events  
between ECMWF and each of the other models is also listed, with significant (p < 0.05) correlations  
highlighted in bold type. The numbers of overlapped well- and poorly-predicted ISV events are listed below  
the name of each model.   

  

Preceding signals of the well-predicted and poorly-predicted events. It is hypothesized that  

these well-predicted and poorly-predicted ISV events have different preceding signals, which  

could be used to identify the OBs for predicting each event. The observed preceding signals in  
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OLR and 200-hPa winds were used to respectively detect the tropical and extratropical origins  

for EASM ISV. On Day 0, which corresponds to the central day of each event and the peak  

phase of EASM ISV, the OLR composite centers over the southern EASM regions, aligning  

with the precipitation anomalies of the selected ISV events (Fig. 5).   

  
Fig. 5. Spatiotemporal structure of well- and poorly-predicted events of EASM ISV. Time lagged- 
composite maps, from Day −12 to Day 0 using four-day time increments, of 12‒40-day filtered OLR  
anomalies (shading) and 200-hPa wind anomalies (vector) with respect to a 98 well-predicted and b 130  
poorly-predicted ISV events based on ECMWF prediction for boreal summers of 1999‒2018. Day 0 denotes  
the peak of each event, and the signs of dry events are reversed for composite. Only significant (p < 0.05)  
OLR and wind anomalies based on the Student’s t-test are shown. Letters A and C track the centers of the  
anomalous extratropical anticyclone and cyclone, respectively, whereas E tracks the center of enhanced  
tropical convection, as indicated by the negative OLR anomaly.   

  

In the case of well-predicted events, there was a notable emergence of enhanced  

convection, characterized by a southwest‒northeast-tilted rain band anomaly (Fig. 5a). On Day  
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−12, this enhanced convection originated from the western North Pacific, covering the South  

China Sea and Philippine Sea. The enhanced convection system, coupled with low-level  

cyclonic wind anomalies (Supplementary Fig. 2), propagated northwestward and was followed  

by suppressed convection to its southeast, forming a northwestward-propagating wave train.  

By approximately Day -4, the enhanced convection started approaching East Asia, and reached  

its peak over southern EASM regions on Day 0. This northwestward-propagating tropical mode,  

often termed as the tropical quasi-biweekly oscillation (Lau and Lau 1990), is a convectively  

coupled Rossby wave (Wang and Xie 1997; Kikuchi and Wang 2009; Kiladis et al. 2009).   

A significant preceding signal was also observed in the extratropical region. On Day -12,  

an upper-level anticyclonic‒cyclonic wave train was observed between the East European Plain  

and Iranian Plateau, which then propagated eastwards to the north of the Tibetan Plateau,  

mimicking the well-known Eurasian wave train (Wallace and Gutzler 1981; Barnston and  

Livezey 1987) on the sub-seasonal time scale (Zhu et al. 2023). By Day -4, this upper-level  

cyclonic anomaly reached the Mongolian Plateau, before proceeding southeastward and  

intensifying over northern China by Day 0. The presence of the cyclonic anomaly over northern  

China could cause upward motion over southern EASM regions due to upper-level divergence  

induced by vorticity advection (Watanabe and Yamazaki 2012; Li and Mao 2019), which  

consequently contributed to increased EASM precipitation in these areas.  

For the poorly-predicted events, no significant tropical precursor was identified (Fig. 5b).  

Suppressed convection only appeared over the South China Sea on Day 0, and it is likely a  

consequence rather than a precursor of the enhanced EASM precipitation. However, a notable  

preceding signal was observed in the extratropical region. On Day -12, an upper-tropospheric  

cyclonic‒anticyclonic wave train appeared between the western Tibetan Plateau and  

Mongolian Plateau. The anticyclonic anomaly then propagated southeastwards and centered  

over northern China on Day −8, resulting in a decrease in EASM precipitation. Another  

reversed wave train (anticyclonic‒cyclonic) was observed over the western Tibetan Plateau‒ 

Mongolian Plateau on Day −4. This wave train led to the same southeastward propagation of  

the upper-level cyclonic anomaly and a subsequent increase in EASM precipitation by Day 0.   

A day-by-day composite of the upper-level signals preceding these poorly-predicted ISV  

events reveals a westward-propagating anomalous anticyclonic high observed in the southern  
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part of northern China from Day −8 (Supplementary Fig. 3). Subsequently, starting on Day -5,  

an anticyclonic anomaly developed over the western Tibetan Plateau, accompanied by the  

development of a cyclonic anomaly over the Mongolian Plateau. This westward propagation  

of high pressure-controlled Rossby wave occurred at latitudes of approximately 30‒40 N,  

south of the climatic westerly jet. Such westward propagation of Rossby waves is due to the  

absence of the Doppler shift effect of the climatic westerly jet. The impact of EASM on the  

western Tibetan Plateau through the westward-propagating Rossby waves was also  

documented in a simulation study (Zhang et al. 2016), although it was on the interannual time  

scale.   

  
Fig. 6. Propagation stability of EASM ISV origins. a Schematic diagram of EASM ISV origins (arrows)  
from Eurasian and tropical wave trains for well-predicted (orange) ISV events, and from a western Tibetan  
Plateau wave train for poorly-predicted (green) events. The preceding upper-tropospheric cyclonic‒ 
anticyclonic centers (connected by dashed lines) and convection centers from Day −12 to Day 0 on Fig. 5  
are indicated by dots and clouds, respectively. b Relationship between the seven-day leading prediction skill  
of weekly EASM precipitation index and propagation stability of the combination (through a multiple linear  
regression) of Eurasian and tropical wave trains in all 12 S2S models. Orange dashed line shows the linear  
regression with a significant correlation coefficient (r) and p-value. Observed propagation stability from  
1979 to 2021 is also marked by a gray dashed line for reference. c Same as b, but for the western Tibetan  
Plateau wave train.   

  

Figure 6a summarized the origins and pathways of the preceding signals of well- and  

poorly-predicted ISV events of EASM precipitation. The pathways of well-predicted events  

were connected by upper-tropospheric anomaly centers from the East European Plain through  

the Mongolian Plateau to northern China. Additionally, tropical convection centers from the  
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western North Pacific to East Asia also play a significant role in the development of these  

events. The poorly-predicted events, however, originate from the upper-level cyclonic anomaly  

that extends from the western Tibetan Plateau through the Mongolian Plateau to northern China,  

exacerbated by feedback from the westward propagation of the northern China anticyclonic  

anomaly.   

OBs for skillful sub-seasonal prediction of EASM precipitation. As mentioned above, the  

sub-seasonal prediction skill of EASM precipitation is ISV event-dependent. Thus, the notable  

differences of observed preceding signals between the well- and poorly-predicted ISV events  

provide us an opportunity to assess the predictability of forthcoming events in advance. We  

hypothesized that the prediction skill of EASM precipitation is determined by the propagation  

stability of the ISV origins, namely the stability of the preceding wave trains during their  

propagation. To quantify this, we introduced a wave train index, which was defined as the  

strength of the wave center along its propagation path for a given specific day, and the  

propagation stability could be estimated by the correlation between the preceding wave train  

index for a specific leading day and Day 0. A higher propagation stability implied that the  

preceding wave train propagates steadily and is, therefore, more predictable.   

The preceding wave train indices for both observed and simulated ISV events were  

defined based on the observed composite map (Fig. 5). On Day −4, the Eurasian wave train  

was comprised of an upper-level Novosibirsk Plain anticyclone and Mongolian Plateau cyclone;  

thus, the Eurasian wave train index (I-4) was defined as the difference between the 200-hPa  

averaged geopotential height anomalies in the anticyclonic “A” region (HA-4) and those in the  

cyclonic “C” region (HC-4) for well-predicted ISV events, i.e., I-4=HA-4-HC-4. The western  

Tibetan Plateau wave train index was defined in the same way, but it was based on the  

composite map for poorly-predicted ISV events.  

 On Day 0, we only considered the cyclonic anomaly over northern China (I0=-HC0) for  

both the Eurasian and western Tibetan Plateau wave trains, since the anticyclonic anomaly was  

so weak for the western Tibetan Plateau wave train. The tropical wave train index was defined  

as the difference between the averaged OLR anomalies in the enhanced convection “E” region  

and those in the suppressed convection region to its southeast side for well-predicted events. A  
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threshold of 0.6 times the maximum anomalies was used to select these regions in Fig. 5 and 387 

different choices of the threshold did not qualitatively change our results. 388 

The propagation stability was defined by the correlation coefficient between the wave 389 

train index for any k-leading day (I-k) and the reference day 0 (I0) during boreal summer in 390 

observation from 1979 to 2021 and in models for their hindcast periods. The calculation 391 

procedure of this propagation stability is shown in Supplementary Fig. 5. 392 

Here, we took the propagation stability from Day -4 to Day 0 as an example. There was a 393 

strong correlation between the seven-day leading prediction skill of EASM weekly 394 

precipitation and the propagation stability among these 12 S2S models, with a correlation 395 

coefficient of 0.73 (p < 0.01) for the combined stability (through a multiple linear regression) 396 

of Eurasian and tropical wave trains (Fig. 6b), and 0.71 (p < 0.01) for the western Tibetan 397 

Plateau wave train (Fig. 6c). This result indicates that a higher stability of the ISV origin leads 398 

to a better prediction of EASM precipitation in S2S models. 399 

The observed propagation stability of the western Tibetan Plateau wave train, from Day -400 

4 to Day 0, was 0.41 (p < 0.01), which was weaker than the combined stability of Eurasian and 401 

tropical wave trains (0.47; p < 0.01), and much weaker compared to that of the Eurasian wave 402 

train alone (0.56; p < 0.01). Moreover, for a longer leading period of Day -12, the propagation 403 

stability of the western Tibetan Plateau wave train sharply dropped to 0.24, which was notably 404 

weaker than those of the Eurasian (0.45; p < 0.01) and tropical (0.41; p < 0.01) wave trains.  405 

The low propagation stability of the western Tibetan Plateau wave train acted as a barrier 406 

for skillful EASM sub-seasonal prediction, confining the prediction skill to only one week. 407 

However, the more stable Eurasian and tropical wave trains provided opportunities for 408 

achieving long-term skillful sub-seasonal prediction extending up to 13 days. Since the tropical 409 

and Eurasian wave trains only accounted for about half of the intra-seasonal variance of EASM 410 

precipitation (Ren et al. 2022), only 43% of the ISV events could be well predicted by the 411 

ECMWF model.  412 

The propagation stability of these tropical and extratropical origins in the 12 S2S models 413 

was generally found to be weaker compared to observations (Figs. 6b and 6c), especially for 414 

the models with low prediction skill (Figs. 1b and 3). This indicates that even if the models are 415 

able to simulate the cloud microphysics processes and precipitation, there is still room for 416 
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improvement in the simulation of these preceding signals to enhance the prediction skill of ISV 

events. Alternatively, the imperfect precipitation simulation also limits the prediction skill. A 

clear example is the China Meteorological Administration (CMA) model that demonstrated the 

highest propagation stability for the Eurasian and tropical wave trains but exhibited low 

prediction skill for precipitation (Fig. 6b). This implies that the CMA model could benefit from 

further improvements in terms of precipitation parameterizations or from post-processing 

approach using predicted circulation.  

In this work, we focused on the weekly precipitation prediction. Different selections of 

intra-seasonal bands such as 12-80 days or 8-40 days, or different prediction targets such as 

pentad or biweekly precipitation anomalies did not qualitatively change our results, although 

there were slight changes in the OBs (Supplementary Figs. 6-8). 

 

 

Discussions and Conclusions  

This study introduces a method to increase our confidence in achieving more accurate 

sub-seasonal prediction by identifying two key components: the opportunities and barriers. The 

central idea is to identify the types of ISV events in which the model exhibits high prediction 

skills (opportunities) and those in which the model’s skills are limited (barriers). Identifying 

these OBs will help us gain confidence in predicting such events and acknowledge the 

limitations of predictability.  

We focus on the complex EASM, where the average skillful prediction of weekly 

precipitation remains limited to a lead time of one week despite employing state-of-the-art 

dynamical prediction models. Prediction skill of the model for weekly precipitation anomalies 

is limited to six days when the target week does not include any strong ISV events. This 

indicates that the predictability of the EASM mainly comes from strong ISV events and 

suggests that we should focus on predicting ISV events in sub-seasonal predictions.  

Our results further reveal that the sub-seasonal prediction skill heavily relies on the origins 

of each ISV event. Specifically, models demonstrate good prediction skills for ISV events 

originating from the tropical and Eurasian wave trains, while they perform poorly in predicting 

events originating from the western Tibetan Plateau wave train. The opportunity for skillful 
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sub-seasonal prediction arises from the steady propagation of tropical and extratropical 

Eurasian wave trains, which enables a skillful prediction up to 13 days ahead for 43% of all 

events. However, the weak propagation stability of the Tibetan Plateau wave train, acting as a 

“Tibetan Plateau barrier”, restricts the skillful prediction to within five days, even in the best-

performing model (ECMWF).  

Our work only focuses on identifying precursor signals in the troposphere. Numerous 

studies have demonstrated the influence of precursors such as soil moisture, snow cover, 

stratospheric circulation, and sea surface temperature on the ISV (Koster et al. 2011; DeMott 

et al. 2015; Li et al. 2018; Domeisen et al. 2020; Mariotti et al. 2020). Although current 

dynamic prediction models struggle to precisely simulate them as effective precursors (Richter 

et al. 2024), an empirical model using machine learning methods, process improvement in 

dynamic models, or a combining dynamical and data-driven forecast (Bach et al. 2024), should 

benefit the identification of OBs for accurate prediction.  

The approach used in this study to identify OBs for skillful prediction should also be 

applicable to other weather and climate systems and regions beyond the EASM area, if we can 

find explicit physical processes for the identified OBs, contributing to the Earth-System 

Prediction Initiative (Shapiro et al. 2010). For example, it is interesting to investigate whether 

the wave activities over the Eurasian continent and Tibetan Plateau act as opportunities or 

barriers for the seasonal prediction of EASM, as they have been found to have a significant 

impact on EASM precipitation (Liu et al. 2007; Jiang et al. 2022; Liu et al. 2023). In practical 

prediction, by examining the signals preceding the initial time, we can assess the likelihood of 

the model yielding either favorable or unfavorable predictions based on their resemblance to 

the OBs. When the prediction system raises an alarm for an upcoming disaster event, we need 

to go back and check if there were any signals resemble the opportunities in observation prior 

to the prediction. If such resemblances are noticed, we should enhance our confidence in 

making more accurate predictions and raise alarms for potential disasters.  
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