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ABSTRACT: Accurate subseasonal (2–8 weeks) prediction of monsoon precipitation is crucial for 
mitigating flood and heatwave disasters caused by intraseasonal variability (ISV). However, cur-
rent state-of-the-art subseasonal-to-seasonal (S2S) models have limited prediction skills beyond 
1 week when predicting weekly precipitation. Our findings suggest that predictability primarily 
arises from strong ISV events, and the prediction skills for ISV events depend on the propaga-
tion stability of preceding signals, regardless of models. This allows us to identify opportunities 
and barriers (OBs) within S2S models, clarifying what the models can and cannot achieve in ISV 
event prediction. Focusing on the complex East Asian summer monsoon (EASM), we discover that 
stable propagation of Eurasian and tropical atmospheric wave trains toward East Asia serves as 
an opportunity. This opportunity offers a 1-week leading prediction skill of up to 0.85 and skillful 
prediction up to 13 days ahead for 43% of all ISV events. However, the Tibetan Plateau barrier 
highlights the limitation of EASM predictability. Identifying these OBs will help us gain confidence 
in making more accurate subseasonal prediction.

SIGNIFICANCE STATEMENT: Accurate subseasonal prediction (2–8 weeks) is urgently needed 
to facilitate effective disaster prevention, application of renewable energy, logistical planning, 
agricultural production, and decision-making. Current scientific research and practical applications 
typically focus on predicting all ISV events, which renders the low-average prediction skill relatively 
less helpful. In response, we propose an innovative idea for performing subseasonal prediction: 
predicting only what the models can accurately predict. The central idea is to identify the types of 
ISV events in which the model exhibits high prediction skills (opportunities) and those where the 
model’s skills are limited (barriers). Compared to the average forecast skill of all events, accurate 
predictions of specific events can be more beneficial to us.
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1. Introduction
The record-breaking East Asian summer monsoon (EASM) precipitation in 2020 had a wide-
spread impact on millions of people across East Asia, resulting in more than 260 human 
casualties and an economic loss exceeding 16 billion U.S. dollars in China, Japan, and South 
Korea (Hirockawa et al. 2020; Takaya et al. 2020; Wei et al. 2020; KMA 2021; Park et al. 
2021). In 2022, the high-intensity and prolonged heat wave and extreme precipitation also 
hit different parts of East Asia due to internal variability and global warming, leading to a 
direct economic loss of 4.7 billion U.S. dollars in China (He et al. 2023; Jiang et al. 2023; 
Sheng et al. 2023). These extreme precipitation and heat wave events, influenced by intra-
seasonal variability (ISV), often manifest as a series of wet and dry pulses on the subseasonal 
time scale (Zhang 2013; Hsu et al. 2016; Ding et al. 2021; Liu et al. 2022), and have become 
more frequent and intense associated with the global warming (Meehl and Tebaldi 2004; 
Liu et al. 2022).

Accurate prediction of precipitation on the subseasonal time scale is crucial for various 
sectors, including renewable energy application, disaster prevention, logistical planning, 
agricultural production, and decision-making (Webster and Hoyos 2004). Current state-of-
the-art subseasonal-to-seasonal (S2S) prediction models, however, exhibit a relatively low 
prediction skill (with a correlation coefficient < 0.5) beyond 1 week for weekly monsoon pre-
cipitation anomaly forecasts (Li and Robertson 2015; de Andrade et al. 2019), particularly 
for the EASM (Liu et al. 2022).

In the pursuit of subseasonal prediction, researchers have attempted to identify strategic 
windows of opportunity that provide specific climate phenomena or conditions for a predict-
able signal above the weather noise (Sigmond et al. 2013; National Academies of Sciences, 
Engineering, and Medicine 2016; Lim et al. 2019; Mariotti et al. 2020; Singh et al. 2024). 
However, accurately predicting EASM ISV poses a particular challenge due to the complex 
tropical–extratropical interaction and Tibetan Plateau’s influence (Stan et al. 2017; Liu et al. 
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2022). Multiple factors contribute to the large magnitude of EASM ISV (Ren et al. 2022), in-
cluding the northwestward-propagating boreal-summer intraseasonal oscillation (Chen et al. 
2001; Mao and Chan 2005), Tibetan Plateau heating (Y. Liu et al. 2020), the quasi-biweekly 
oscillation (Yang et al. 2010; Hsu et al. 2016), and the southeastward-propagating mid-to-high 
latitude wave trains (Yang et al. 2017; Gao et al. 2018).

To date, it remains unclear whether the current state-of-the-art dynamic prediction 
models can effectively capture these preceding signals to enhance subseasonal prediction 
for each EASM ISV event. Addressing the above issue could help enhance the subseasonal 
prediction skill for some ISV events, thereby improving its practical application. Our strat-
egy is to differentiate the capabilities of current state-of-the-art S2S prediction models (the 
opportunities) from their limitations (the barriers) and gain a deeper understanding of why 
S2S models succeed in capturing certain opportunities and yet fail to overcome specific bar-
riers. Specifically, we first categorized ISV events into well-predicted and poorly predicted 
events based on the model performance. Then, we constructed the observed preceding 
signals for these two types of events by examining explicable physical processes, which 
can be considered as the opportunities and barriers (OBs) for S2S model prediction. When 
the initial signals resemble the opportunities, it indicates a higher accuracy and confidence 
level in the prediction results, providing a reliable signal for us to raise the alarm for po-
tential disasters. The identification of prediction barriers also underscores the limitation 
of monsoon predictability.

Here, we used the wide-ranging database from 12 models in the S2S prediction project, 
which was jointly launched by World Weather Research Programme (WWRP) and World  
Climate Research Programme (WCRP) to meet the increasing need for accurate S2S  
prediction (Vitart et al. 2017). The longest reforecasts (hindcasts) can extend up to 65 days.

2. Data and methods
a. Observation and prediction data. We used daily Climate Prediction Center (CPC) global 
precipitation data with a high resolution of 0.5° × 0.5°, provided by the National Oceanic 
and Atmospheric Administration (NOAA) (Xie et  al. 2007), owing to their extensive tem-
poral coverage extending from 1979 to 2021 and their good ability in capturing EASM ISV  
(F. Liu et al. 2020). To represent tropical large-scale organized deep convection, daily outgoing  
longwave radiation (OLR) data with a resolution of 2.5° × 2.5° provided by the NOAA were 
used (Liebmann and Smith 1996). Daily winds and geopotential height at 200 hPa, obtained  
from the National Centers for Environmental Prediction (NCEP) Reanalysis II dataset  
(Kanamitsu et al. 2002), were used to composite the extratropical intraseasonal signal. The 
study period covered the boreal summer from 1979 to 2021. All EASM ISV events during 
broad summer season from May to September were defined and analyzed. The seasonal evo-
lution of EASM ISV, with a preceding signal evolving from mid-to-high latitudes in early 
summer and from the tropics in late summer (F. Liu et al. 2020), was not the focus here and 
should be investigated in the near future.

To study the subseasonal prediction of EASM precipitation, the hindcasts of precipitation 
from 12 global prediction systems, which participated in the S2S prediction project (Vitart 
et al. 2017), were investigated (Table 1). These models had different ensemble sizes for their 
hindcasts, and the multiensemble mean of each model was used. To make a fair comparison 
between other S2S models with the European Centre for Medium-Range Weather Forecasts 
(ECMWF) model, which exhibited the best prediction skill and conducted hindcast twice 
per week (on Monday and Thursday), we also adopted the same frequency for the Institute of 
Atmospheric Physics (IAP), Chinese Academy of Sciences, and NCEP models, both of which 
provided daily hindcasts.
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b. ISV of EASM precipitation. The intraseasonal EASM precipitation mainly falls in the 
12–40 day range (F. Liu et al. 2020, 2022). We identify the leading ISV mode by extract-
ing the first empirical orthogonal function (EOF) mode of summer (May–September) 
12–40-day bandpass-filtered precipitation over the EASM (20°–45°N, 100°–145°E) land 
regions. The Lanczos filter with 121 weights was used to perform the bandpass filtering 
(Duchon 1979).

c.  ISV events.  An ISV event was defined when the maxima or minima of 12–40-day 
bandpass-filtered EASM precipitation index (which will be defined later) anomaly were >0.5 
standard deviation units for wet events or <−0.5 standard deviation units for dry events. The 
central day of an event, referred to as day 0, was determined as the day when the filtered 
precipitation index anomaly reached its peak or lowest point. Events primarily caused by ex-
ceptionally strong synoptic disturbances were excluded. This was done by excluding cases 
with the raw weekly precipitation index around day 0 below the climatology for wet events 
or above the climatology for dry events.

d.  Compositing and significance.  The correlation coefficient between predicted and ob-
served weekly EASM precipitation index anomalies for any given day leading prediction 
was calculated using 840 ECMWF hindcasts for the summer season spanning from 1999 to 
2018. The anomalies in observations and hindcasts were calculated relative to their respec-
tive daily climatology. The twice-per-week hindcast from the ECMWF is only available for 
Monday or Thursday, and thus the nearest hindcast to the target initial day was selected for 
each prediction. This selection process ensured a minimal bias of 1 day or no bias. Any pre-
diction of ISV event that required a hindcast from Saturday was excluded from the analysis 
due to the hindcast’s 2-day difference from the target initial day (Fig. 1 in the online supple-
mental material).

To represent the preceding signals of ISV events, time-lagged compositing was performed 
with respect to day 0 of each event. For subseasonal prediction evaluation, a correlation co-
efficient of 0.5 was used as the threshold to determine whether a prediction was skillful or 
not. For composites, a two-tailed Student’s t test was used to test statistical significance. The 
Monte Carlo method with 10 000 iterations was used for testing the improvement of the pre-
diction skill. For the filtered signal, the effective degree of freedom was considered to test the 

Table 1. Main features of the 12 global prediction systems in the S2S database.

S2S model
Time 

range (days)
Grid 

resolution
Hindcast 

frequency
Hindcast  
period

Ensemble  
size

Model  
version year

BoM 62 144 × 72 6 per month 1981–2013 33 2014

CMA 60 240 × 121 2 per week 2005–19 4 2020

CNR-ISAC 31 240 × 121 Every 5 days 1981–2010 5 2017

CNRM 47 240 × 121 Weekly 1993–2017 10 2019

ECCC 32 240 × 121 Weekly 1998–2017 4 2020

ECMWF 45 240 × 121 2 per week 1999–2018 11 2019

HMCR 61 240 × 121 Weekly 1985–2010 10 2020

JMA 33 240 × 121 2 per month 1981–2020 13 2021

KMA 60 240 × 121 4 per month 1991–2016 3 2021

NCEP 44 240 × 121 Daily 1999–2010 4 2011

UKMO 60 240 × 121 4 per month 1993–2016 7 2019

IAP-CAS 65 240 × 121 Daily 1999–2018 4 2019
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significance (Zwiers and von Storch 1995), which is defined as N N r re ( )/( )= 1− 1 1+ 1 , where 
N is the sample size of total days and r1 is the lag-one autocorrelation. The significance of 
multimodel mean prediction skill was tested using the smallest effective degree of freedom 
among the 12 models.

3. Results
a. Limited skill of S2S models in predicting subseasonal EASM precipitation. To evaluate 
the subseasonal prediction skill of weekly precipitation which is primarily dominated by 
predicting the ISV, we focused on the leading ISV mode of EASM precipitation. This mode 
exhibits a uniform spatial structure over southern EASM regions, encompassing areas south 
of the Yangtze River and western Japan (Fig. 1a). We used this EOF1 pattern in the observa-
tion to define the monsoon domain considered in this study. In both observations and pre-
dictions, the raw daily precipitation averaged over the southern EASM regions, i.e., the wet 
regions in Fig. 1a with precipitation anomalies >0.5 mm day−1, was used to define the EASM 
precipitation index.

The multimodel mean of all 12 models displayed a skillful prediction of the weekly EASM 
precipitation index (Fig. 1b), measured by a correlation coefficient >0.5, only for 5 days in 
advance for all hindcasts. Notably, among all models, the ECMWF model exhibited the high-
est skill. However, even with its superior performance, the ECMWF model’s skillful predic-
tion extended only for up to 7 days, being consistent with previous findings of the limited 

Fig. 1. EASM ISV and its prediction skill. (a) Leading mode of EASM ISV represented by the first EOF 
pattern of 12–40-day bandpass-filtered EASM (20°–45°N, 100°–145°E) land precipitation anomalies in 
CPC observation from 1979 to 2021. The upper and lower gray lines denote the Yellow and Yangtze 
rivers, respectively. The purple contour delineates the wet EASM regions with precipitation anomalies 
>0.5 mm day−1. The percentage variance explained by this leading mode is marked on the panel. (b) Pre-
diction skill of the weekly EASM precipitation index for 12 S2S models (colored lines) as a function of 
prediction lead days for their respective validation periods (Table 1). Black line denotes the multimodel 
mean. Solid lines denote significant (p < 0.01) skills. (c) ECMWF predicted event amplitude (mm day−1) 
of EASM ISV averaged for all ISV events (blue line), well-predicted events (orange line), and poorly 
predicted events (green line). (d) ECMWF prediction skill of the weekly EASM precipitation index for all 
weeks [blue line, same as in (b)], weeks controlled by well-predicted (orange line) or poorly predicted 
(green line) ISV events, and weeks without any effect from ISV events (purple line).
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subseasonal prediction skill for global land precipitation (Li and Robertson 2015; de Andrade 
et al. 2019; Liu et al. 2022; Singh et al. 2024). Here, a 7-day leading prediction of weekly 
precipitation refers to the prediction of the average precipitation for the seventh to thirteenth 
day from the initial time.

The subseasonal prediction skill of S2S models is expected to largely depend on their ability 
to capture the strong EASM ISV events. According to the definition presented in the method 
section, the EASM precipitation index was used to define the ISV events (Fig. 2a). There were 
440 EASM ISV events during the period 1979–2021 (Fig. 2b). Supplemental Table 1 presented 
the top 30 wet and 30 dry events based on their rankings. During the period when ECMWF 
hindcasts were available (1999–2018), a total of 228 strong EASM ISV events, including both 
wet and dry events, were observed.

The amplitude of an ISV event was defined as the weekly EASM precipitation index 
anomaly relative to climatology spanning day 0, with the sign reversed for dry events that 
had negative precipitation anomalies. The 228 events from 1999 to 2018 displayed an av-
erage amplitude of 3.2 mm day−1 in observations, approximately half of the seasonal mean 
precipitation which stands at 6.0 mm day−1. The wet events were stronger than the dry events, 
with average amplitudes of 3.6 and 2.7 mm day−1, respectively. Overall, the ECMWF model 
initially captures the average ISV event amplitude for the first 2 days, but the predicted ISV 
amplitude quickly declined as forecast lead time increased, resulting in an average predicted 

Fig. 2. Selection of ISV events from observations. Time series of EASM precipitation index anomaly 
(gray line), its 12–40-day component (black line), and 7-day running mean (blue line) for (a) 2020–21  
summers and (b) 1979–2021 summers in the observation of CPC. Blue and red dots denote centers (day 0)  
of wet and dry ISV events, respectively. An ISV event is defined when the extrema of the 12–40-day-
filtered EASM precipitation index anomaly are >0.5 standard deviation units for a wet event or <−0.5 
standard deviation units for a dry event; events (circles) having a raw weekly precipitation index  
centered at day 0 below the climatology for wet events, and above the climatology for dry events, 
are removed (see methods). The hindcast periods of the 12 S2S models are also listed, represented by 
colored horizontal lines in (b).
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ISV amplitude of 1.2 mm day−1 for a 7-day forecast (Fig. 1c). Similarly, other 11 models also 
exhibited lower predicted ISV amplitude compared to the observations (Fig. 3).

b. Well-predicted and poorly predicted ISV events. To unravel the causes of the under-
estimation of ISV amplitude in model prediction, we defined a “prediction score” that 
represents the ratio of predicted to observed ISV amplitude for each event at a given fore-
cast lead time. A higher score indicates better prediction for an event, while a negative 
score signifies model’s incorrect prediction of the ISV phase. A well-predicted event re-
quired a prediction score >0.5; otherwise, it was defined as a poorly predicted event. Dif-
ferent threshold selections of prediction score did not qualitatively change our results. 
Among the 228 strong ISV events observed during the period 1999–2018, we identified 
98 (43%) well-predicted events and 130 (57%) poorly predicted events based on the 7-day 
leading prediction score of the ECMWF model. As depicted in Fig. 1c, the ECMWF model 
predicted apparently higher ISV amplitude for well-predicted events compared to poorly 
predicted events.

To explore the subseasonal prediction skill of weekly EASM precipitation index anoma-
lies associated with different strong ISV events, we categorized the targeted weeks in all 
hindcasts into three groups: those dominated by 1) well-predicted ISV events, 2) poorly 
predicted ISV events, and 3) weeks without any strong ISV events. A targeted week was 
defined as a strong ISV-dominated week if it encompassed day 0, i.e., the central day, of 
an ISV event.

For the weeks without any observed ISV events, which accounted for approximately 49% of 
the study period and are less likely to cause flood and heat wave disasters, the ECMWF model’s 
forecast skill for precipitation was limited to six days. However, for ISV-dominated weeks, 
the ECMWF model demonstrated a much better precipitation forecast skill for well-predicted 
events compared to poorly predicted events (Fig. 1d). The skillful prediction, indicated by a 
correlation coefficient >0.5, was extended from 5 days for poorly predicted events to 13 days 
for well-predicted events. For 1-week leading prediction, the average prediction skill of the 
ECMWF model for well-predicted events (with a correlation coefficient of 0.85) is more than 
double that for poorly predicted events (0.38).

Fig. 3. Predicted EASM ISV event amplitude in S2S models. Prediction of EASM ISV event amplitude 
(mm day−1) averaged for all EASM ISV events in each of the 12 S2S models (colored lines) for their own 
validation periods (Table 1), as well as their multimodel mean (black line). The dashed horizontal line 
denotes the average amplitude (3.2 mm day−1) for all observed ISV events from 1999 to 2018. For each 
event, the amplitude is defined as the weekly EASM precipitation index anomaly with respect to clima-
tology, with the sign reversed for dry events.
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In most of the other 11 S2S models, the prediction skills for weekly EASM precipitation, 
particularly for events classified as well predicted compared to those classified as poorly 
predicted based on the ECMWF prediction, were markedly higher (Fig. 4). Furthermore, for 
the ISV events predicted by both ECMWF and other models, a significant correlation was 
also observed between ECMWF and most of the other models for 7-day leading prediction 
scores. These results suggest that when one ISV event is accurately predicted by the ECMWF 
model, it also exhibits better prediction performance in other S2S models. In other words, 
the subseasonal prediction skill of EASM precipitation, regardless of S2S prediction models, 
depends on the characteristics of the ISV event itself.

c. Preceding signals of the well-predicted and poorly predicted events. It is hypothesized 
that these well-predicted and poorly predicted ISV events have different preceding signals, 
which could be used to identify the OBs for predicting each event. The observed preced-
ing signals in OLR and 200-hPa winds were used to, respectively, detect the tropical and 
extratropical origins for EASM ISV. On day 0, which corresponds to the central day of each 
event and the peak phase of EASM ISV, the OLR composite centers over the southern EASM 
regions, aligning with the precipitation anomalies of the selected ISV events (Fig. 5).

In the case of well-predicted events, there was a notable emergence of enhanced convec-
tion, characterized by a southwest–northeast-tilted rainband anomaly (Fig. 5a). On day −12, 
this enhanced convection originated from the western North Pacific, covering the South 
China Sea and Philippine Sea. The enhanced convection system, coupled with low-level 
cyclonic wind anomalies (supplemental Fig. 2), propagated northwestward and was followed 
by suppressed convection to its southeast, forming a northwestward-propagating wave 
train. By approximately day −4, the enhanced convection started approaching East Asia and 
reached its peak over southern EASM regions on day 0. This northwestward-propagating 
tropical mode, often termed as the tropical quasi-biweekly oscillation (Lau and Lau 1990),  
is a convectively coupled Rossby wave (Wang and Xie 1997; Kikuchi and Wang 2009; 
Kiladis et al. 2009).

Fig. 4. ISV event–dependent subseasonal prediction skill. Longer prediction extent for skillful prediction 
of the weekly EASM precipitation index from control by well-predicted (orange bars) than by poorly 
predicted (green bars) events in all 12 S2S models. These well- and poorly predicted ISV events are 
defined based on ECMWF prediction, and only the periods that overlap with ECMWF prediction are 
analyzed in the other models. Stars indicate significant improvement (p < 0.05) based on the Monte 
Carlo method with 10 000 iterations. The prediction extent is defined by the last day on which the cor-
relation coefficient is >0.5. Correlation (number over the bar) of 7-day leading prediction scores for all 
overlapped ISV events between ECMWF and each of the other models is also listed, with significant  
(p < 0.05) correlations highlighted in bold type. The numbers of overlapped well- and poorly predicted 
ISV events are listed below the name of each model.
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A significant preceding signal was also observed in the extratropical region. On day −12, an 
upper-level anticyclonic–cyclonic wave train was observed between the East European Plain 
and Iranian Plateau, which then propagated eastward to the north of the Tibetan Plateau, mim-
icking the well-known Eurasian wave train (Wallace and Gutzler 1981; Barnston and Livezey 
1987) on the subseasonal time scale (Zhu et al. 2023). By day −4, this upper-level cyclonic 
anomaly reached the Mongolian Plateau, before proceeding southeastward and intensifying 

Fig. 5. Spatiotemporal structure of well- and poorly predicted events of EASM ISV. Time lagged-composite maps, from day −12 
to day 0 using 4-day time increments, of 12–40-day filtered OLR anomalies (shading) and 200-hPa wind anomalies (vector) 
with respect to (a) 98 well-predicted and (b) 130 poorly predicted ISV events based on ECMWF prediction for boreal summers 
of 1999–2018. Day 0 denotes the peak of each event, and the signs of dry events are reversed for composite. Only significant  
(p < 0.05) OLR and wind anomalies based on the Student’s t test are shown. Letters A and C track the centers of the anomalous 
extratropical anticyclone and cyclone, respectively, whereas E tracks the center of enhanced tropical convection, as indicated by 
the negative OLR anomaly.
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over northern China by day 0. The presence of the cyclonic anomaly over northern China could 
cause upward motion over southern EASM regions due to upper-level divergence induced by 
vorticity advection (Watanabe and Yamazaki 2012; Li and Mao 2019), which consequently 
contributed to increased EASM precipitation in these areas.

For the poorly predicted events, no significant tropical precursor was identified (Fig. 5b). 
Suppressed convection only appeared over the South China Sea on day 0, and it is likely a 
consequence rather than a precursor of the enhanced EASM precipitation. However, a notable 
preceding signal was observed in the extratropical region. On day −12, an upper-tropospheric 
cyclonic–anticyclonic wave train appeared between the western Tibetan Plateau and Mongo-
lian Plateau. The anticyclonic anomaly then propagated southeastwards and centered over 
northern China on day −8, resulting in a decrease in EASM precipitation. Another reversed 
wave train (anticyclonic–cyclonic) was observed over the western Tibetan Plateau–Mongolian 
Plateau on day −4. This wave train led to the same southeastward propagation of the 
upper-level cyclonic anomaly and a subsequent increase in EASM precipitation by day 0.

A day-by-day composite of the upper-level signals preceding these poorly predicted ISV 
events reveals a westward-propagating anomalous anticyclonic high observed in the southern 
part of northern China from day −8 (supplemental Fig. 3). Subsequently, starting on day −5, 
an anticyclonic anomaly developed over the western Tibetan Plateau, accompanied by the 
development of a cyclonic anomaly over the Mongolian Plateau. This westward propagation of 
high pressure-controlled Rossby wave occurred at latitudes of approximately 30°–40°N, south 
of the climatic westerly jet. Such westward propagation of Rossby waves is due to the absence 
of the Doppler shift effect of the climatic westerly jet. The impact of EASM on the western 
Tibetan Plateau through the westward-propagating Rossby waves was also documented in a 
simulation study (Zhang et al. 2016), although it was on the interannual time scale.

Figure 6a summarizes the origins and pathways of the preceding signals of well- and 
poorly predicted ISV events of EASM precipitation. The pathways of well-predicted events 
were connected by upper-tropospheric anomaly centers from the East European Plain 
through the Mongolian Plateau to northern China. Additionally, tropical convection centers 
from the western North Pacific to East Asia also play a significant role in the development of 
these events. The poorly predicted events, however, originate from the upper-level cyclonic 
anomaly that extends from the western Tibetan Plateau through the Mongolian Plateau to 
northern China, exacerbated by feedback from the westward propagation of the northern 
China anticyclonic anomaly.

d. OBs for skillful subseasonal prediction of EASM precipitation.  As mentioned above, 
the subseasonal prediction skill of EASM precipitation is ISV event dependent. Thus, the 
notable differences of observed preceding signals between the well- and poorly predicted 
ISV events provide us an opportunity to assess the predictability of forthcoming events in 
advance. We hypothesized that the prediction skill of EASM precipitation is determined by 
the propagation stability of the ISV origins, namely, the stability of the preceding wave trains 
during their propagation. To quantify this, we introduced a wave train index, which was de-
fined as the strength of the wave center along its propagation path for a given specific day, 
and the propagation stability could be estimated by the correlation between the preceding 
wave train index for a specific leading day and day 0. A higher propagation stability implied 
that the preceding wave train propagates steadily and is, therefore, more predictable.

The preceding wave train indices for both observed and simulated ISV events were de-
fined based on the observed composite map (Fig. 5). On day −4, the Eurasian wave train was 
comprised of an upper-level Novosibirsk Plain anticyclone and Mongolian Plateau cyclone; 
thus, the Eurasian wave train index (I-4) was defined as the difference between the 200-hPa 
averaged geopotential height anomalies in the anticyclonic “A” region (HA-4) and those in 
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the cyclonic “C” region (HC-4) for well-predicted ISV events, i.e., I-4 = HA-4 − HC-4. The western 
Tibetan Plateau wave train index was defined in the same way, but it was based on the com-
posite map for poorly predicted ISV events.

On day 0, we only considered the cyclonic anomaly over northern China (I0 = −HC0) for both 
the Eurasian and western Tibetan Plateau wave trains, since the anticyclonic anomaly was so 
weak for the western Tibetan Plateau wave train. The tropical wave train index was defined as 
the difference between the averaged OLR anomalies in the enhanced convection “E” region 
and those in the suppressed convection region to its southeast side for well-predicted events. 
A threshold of 0.6 times the maximum anomalies was used to select these regions in Fig. 5, 
and different choices of the threshold did not qualitatively change our results.

The propagation stability was defined by the correlation coefficient between the wave train 
index for any k-leading day (I-k) and the reference day 0 (I0) during boreal summer in observa-
tion from 1979 to 2021 and in models for their hindcast periods. The calculation procedure 
of this propagation stability is shown in supplemental Fig. 5.

Here, we took the propagation stability from day −4 to day 0 as an example. There was a 
strong correlation between the 7-day leading prediction skill of EASM weekly precipitation 
and the propagation stability among these 12 S2S models, with a correlation coefficient of 
0.73 (p < 0.01) for the combined stability (through a multiple linear regression) of Eurasian 
and tropical wave trains (Fig. 6b) and 0.71 (p < 0.01) for the western Tibetan Plateau wave 
train (Fig. 6c). This result indicates that a higher stability of the ISV origin leads to a better 
prediction of EASM precipitation in S2S models.

The observed propagation stability of the western Tibetan Plateau wave train, from day −4 
to day 0, was 0.41 (p < 0.01), which was weaker than the combined stability of Eurasian and 
tropical wave trains (0.47; p < 0.01) and much weaker compared to that of the Eurasian wave 
train alone (0.56; p < 0.01). Moreover, for a longer leading period of day −12, the propagation 

Fig. 6. Propagation stability of EASM ISV origins. (a) Schematic diagram of EASM ISV origins (arrows) from Eurasian and tropical 
wave trains for well-predicted (orange) ISV events and from a western Tibetan Plateau wave train for poorly predicted (green) 
events. The preceding upper-tropospheric cyclonic–anticyclonic centers (connected by dashed lines) and convection centers from 
day −12 to day 0 on Fig. 5 are indicated by dots and clouds, respectively. (b) Relationship between the 7-day leading prediction 
skill of the weekly EASM precipitation index and propagation stability of the combination (through a multiple linear regression) 
of Eurasian and tropical wave trains in all 12 S2S models. Orange dashed line shows the linear regression with a significant cor-
relation coefficient r and p value. Observed propagation stability from 1979 to 2021 is also marked by a gray dashed line for 
reference. (c) As in (b), but for the western Tibetan Plateau wave train.
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stability of the western Tibetan Plateau wave train sharply dropped to 0.24, which was notably 
weaker than those of the Eurasian (0.45; p < 0.01) and tropical (0.41; p < 0.01) wave trains.

The low propagation stability of the western Tibetan Plateau wave train acted as a barrier 
for skillful EASM subseasonal prediction, confining the prediction skill to only 1 week. How-
ever, the more stable Eurasian and tropical wave trains provided opportunities for achieving 
long-term skillful subseasonal prediction extending up to 13 days. Since the tropical and 
Eurasian wave trains only accounted for about half of the intraseasonal variance of EASM 
precipitation (Ren et al. 2022), only 43% of the ISV events could be well predicted by the 
ECMWF model.

The propagation stability of these tropical and extratropical origins in the 12 S2S models 
was generally found to be weaker compared to observations (Figs. 6b,c), especially for the 
models with low prediction skill (Figs. 1b and 3). This indicates that even if the models are 
able to simulate the cloud microphysics processes and precipitation, there is still room for 
improvement in the simulation of these preceding signals to enhance the prediction skill of 
ISV events. Alternatively, the imperfect precipitation simulation also limits the prediction skill. 
A clear example is the China Meteorological Administration (CMA) model that demonstrated 
the highest propagation stability for the Eurasian and tropical wave trains but exhibited low 
prediction skill for precipitation (Fig. 6b). This implies that the CMA model could benefit from 
further improvements in terms of precipitation parameterizations or from postprocessing ap-
proach using predicted circulation.

In this work, we focused on the weekly precipitation prediction. Different selections of in-
traseasonal bands such as 12–80 or 8–40 days or different prediction targets such as pentad 
or biweekly precipitation anomalies did not qualitatively change our results, although there 
were slight changes in the OBs (supplemental Figs. 6–8).

4. Discussion and conclusions
This study introduces a method to increase our confidence in achieving more accurate sub-
seasonal prediction by identifying two key components: the opportunities and barriers. The 
central idea is to identify the types of ISV events in which the model exhibits high prediction 
skills (opportunities) and those in which the model’s skills are limited (barriers). Identify-
ing these OBs will help us gain confidence in predicting such events and acknowledge the 
limitations of predictability.

We focus on the complex EASM, where the average skillful prediction of weekly precipita-
tion remains limited to a lead time of 1 week despite employing state-of-the-art dynamical 
prediction models. Prediction skill of the model for weekly precipitation anomalies is limited 
to 6 days when the target week does not include any strong ISV events. This indicates that the 
predictability of the EASM mainly comes from strong ISV events and suggests that we should 
focus on predicting ISV events in subseasonal predictions.

Our results further reveal that the subseasonal prediction skill heavily relies on the origins 
of each ISV event. Specifically, models demonstrate good prediction skills for ISV events origi-
nating from the tropical and Eurasian wave trains, while they perform poorly in predicting 
events originating from the western Tibetan Plateau wave train. The opportunity for skill-
ful subseasonal prediction arises from the steady propagation of tropical and extratropical 
Eurasian wave trains, which enables a skillful prediction up to 13 days ahead for 43% of all 
events. However, the weak propagation stability of the Tibetan Plateau wave train, acting 
as a “Tibetan Plateau barrier,” restricts the skillful prediction to within 5 days, even in the 
best-performing model (ECMWF).

Our work only focuses on identifying precursor signals in the troposphere. Numerous 
studies have demonstrated the influence of precursors such as soil moisture, snow cover, 
stratospheric circulation, and sea surface temperature on the ISV (Koster et al. 2011; DeMott 
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et al. 2015; Li et al. 2018; Domeisen et al. 2020; Mariotti et al. 2020). Although current dy-
namic prediction models struggle to precisely simulate them as effective precursors (Richter 
et al. 2024), an empirical model using machine learning methods, process improvement in 
dynamic models, or a combining dynamical and data-driven forecast (Bach et al. 2024) should 
benefit the identification of OBs for accurate prediction.

The approach used in this study to identify OBs for skillful prediction should also be 
applicable to other weather and climate systems and regions beyond the EASM area, if we 
can find explicit physical processes for the identified OBs, contributing to the Earth-System 
Prediction Initiative (Shapiro et al. 2010). For example, it is interesting to investigate whether 
the wave activities over the Eurasian continent and Tibetan Plateau act as opportunities or 
barriers for the seasonal prediction of EASM, as they have been found to have a significant 
impact on EASM precipitation (Liu et al. 2007; Jiang et al. 2022; Liu et al. 2023). In practical 
prediction, by examining the signals preceding the initial time, we can assess the likelihood 
of the model yielding either favorable or unfavorable predictions based on their resemblance 
to the OBs. When the prediction system raises an alarm for an upcoming disaster event, we 
need to go back and check if there were any signals resemble the opportunities in observation 
prior to the prediction. If such resemblances are noticed, we should enhance our confidence 
in making more accurate predictions and raise alarms for potential disasters.
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